Complete Solutions to Intro(b)

1. (a) $8^{2}=8 \times 8=64$
(b) $8^{3}=8 \times 8 \times 8=512$ (by calculator).
(c) Use the x^{y} button on your calculator:

$$
8^{8}=\underbrace{8 \times 8 \times \ldots \times 8}_{8 \text { copies }}=16777216
$$

(d) $45^{2}=2025$
(e) $264^{2}=264 \times 264=69696$
(f) Any number to the index 0 is equal to 1 , so $20001^{\circ}=1$.
(g) Use your calculator. To evaluate $(-3)^{5}$ on a calculator, PRESS:
$(-)=3>x^{v}=5$ shows -243.
(Odd power of a negative number gives a negative number).
2. (a) Since $7 \times 7=49$ and $(-7) \times(-7)=49$, so

$$
\pm \sqrt{49}= \pm 7(+7 \text { or }-7)
$$

(b) On calculator $\pm \sqrt{1681}= \pm 41$.
(c) Similarly $\sqrt{183184}=428$.
(d) Use the $\sqrt[3]{ }$ button on your calculator. Hence

$$
\sqrt[3]{2197}=13
$$

(e) $\sqrt[3]{729}=9$
(f) Since we need the 4 th (even) roots of 16 , we have two numbers. Using a calculator, $\pm \sqrt[4]{16}= \pm 2$.
(g) To evaluate $\sqrt[4]{2401}$ on a calculator, PRESS;

Hence

$$
\sqrt[4]{2401}=7
$$

(h) Again, the calculator shows the 8th (even) root of 256 as 2. Are there any other roots?
Yes, -2. Hence

$$
\pm \sqrt[8]{256}= \pm 2
$$

(i) By using our calculator we have $\sqrt[5]{243}=3$.
(j) What is $\sqrt[5]{-(243)}$ equal to?

Since we are interested in the 5 th (odd) root of -243 , it can only be one number, -3. Thus

$$
\sqrt[5]{-(243)}=-3
$$

That is

$$
\underbrace{(-3) \times(-3) \times(-3) \times(-3) \times(-3)}_{5 \text { copies }}=-243
$$

3. For this question we have to first execute the arithmetic and then take the root of the result.
(a) $\sqrt{100-36}=\sqrt{64}=8$
(b) $\sqrt{129+40}=\sqrt{169}=13$

Use your calculator for the remaining parts of this question.
(c) $\sqrt{7225-5929}=\sqrt{1296}=36$
(d) $\sqrt[4]{7225-5929}=6$

Note that on the calculator you have to place brackets, (), around (72255929) otherwise it calculates $\sqrt[4]{7225}-5929$. Remember the subtraction first and then the root.
(e) $500+500=1000$, so

$$
\sqrt[3]{500+500}=\sqrt[3]{1000}=10
$$

(f) $-500-500=-1000$, so

$$
\sqrt[3]{-500-500}=\sqrt[3]{-1000}=-10
$$

That is $(-10) \times(-10) \times(-10)=-1000$.
4. In this question order does not matter. Easier to take root inside and then implement the multiplication or division.
(a) $\sqrt{16 \times 25}=\sqrt{16} \times \sqrt{25}=4 \times 5=20$
(b) Similarly $\sqrt{144 \times 81}=\sqrt{144} \times \sqrt{81}=12 \times 9=108$
(c) The same method applies to division:

$$
\begin{aligned}
\sqrt{\frac{144}{36}} & =\frac{\sqrt{144}}{\sqrt{36}} \\
& =\frac{12}{6} \\
& =12 \div 6 \\
& =2
\end{aligned}
$$

(d) We have

$$
\sqrt{\frac{225}{25}}=\frac{\sqrt{225}}{\sqrt{25}}=\frac{15}{5}=3
$$

For (e) and (f) use your calculator. Remember to place brackets around $\left(\frac{7776}{243}\right)$. The output from the calculator should show 2 and -2 for (e) and (f) respectively.

