Complete Solutions to Intro(c)

1. In this question we list the multiples.
(a) The multiples of 5 are $5,10,15,20,25,30,35,40, \ldots$

The multiples of 6 are $6,12,18,24,30, \ldots$
What number lies in both lists?
30. Hence the LCM of 5 and 6 is 30 .
(b) What are the multiples of 6 and 14 ?

6,12,18,24,30, 42,48,54, ...
$14,28,42, \ldots$ we can stop at 42 because this number (42) also lies in the list of multiples of 6 .
Thus the LCM of 6 and 14 is 42 .
(c) We have the multiples of 6 in (b) so we only need to examine the multiples of $27: 27,54, \ldots$ we can stop at 54 , why?
Because 54 is a multiple of 6 . Therefore the LCM of 6 and 27 is 54 .
(d) Since 3 divides exactly into 42 and 7 divides exactly into 42 , so 42 is a multiple of 3 and 7 . So the lowest common multiple of 3,7 and 42 must be 42.
2. (a) We know $90=9 \times 10$. However 9 and 10 are not prime. What are the prime factors of 9 and 10 ?

$$
\begin{aligned}
& 9=3 \times 3=3^{2} \\
& 10=5 \times 2
\end{aligned}
$$

Hence

$$
90=10 \times 9=5 \times 2 \times 3^{2}=2 \times 3^{2} \times 5
$$

(b) Since 144 is an even number we know 2 divides into 144 . We have

$$
144 \div 2=72
$$

Again 72 is an even number, so

$$
72 \div 2=36
$$

From our 4 times table, 36 can be written as:

$$
\begin{aligned}
36 & =9 \times 4 \\
& =(3 \times 3) \times(2 \times 2)
\end{aligned}
$$

How can we write the prime factors of 144 ?
We know

$$
144=36 \times 2 \times 2
$$

because 36×2 gives 72 and $72 \times 2=144$. We have

$$
144=36 \times 2 \times 2
$$

$$
=\underbrace{(3 \times 3) \times(2 \times 2)}_{\text {from above }} \times 2 \times 2
$$

$$
=\underbrace{(3 \times 3)}_{\text {copies }} \times \underbrace{(2 \times 2 \times 2 \times 2)}_{4 \text { copies }}
$$

$$
144=3^{2} \times 2^{4}
$$

Hence $144=2^{4} \times 3^{2}$.
(c) 94 is an even number, so 2 divides into 94 :

$$
94 \div 2=47
$$

47 is a prime number. Hence

$$
94=2 \times 47
$$

(d) Since the last digit in 495 is 5 so we know 5 divides into 495 . By using a calculator, or otherwise, we have

$$
495 \div 5=99
$$

Is 99 a prime number?
No, because from our 11 times table we have $99=11 \times 9$.
Hence

$$
\begin{aligned}
495 & =99 \times 5 \\
& =11 \times 9 \times 5
\end{aligned}
$$

Remember 9 is not a prime number so it cannot be a prime factor. $9=3 \times 3$, so $9=3^{2}$. Thus

$$
\begin{aligned}
495 & =11 \times 3^{2} \times 5 \\
& =3^{2} \times 5 \times 11
\end{aligned}
$$

3. For this question we first write down the prime decompositions of each number.
(a) We have

$$
\begin{aligned}
24 & =12 \times 2 \\
& =(3 \times 4) \times 2 \\
& =(3 \times \underbrace{2 \times 2}_{=4}) \times 2 \\
& =3 \times \underbrace{2 \times 2 \times 2}_{3 \text { copies }} \\
24 & =2^{3} \times 3
\end{aligned}
$$

Similarly

$$
\begin{aligned}
54 & =9 \times 6 \\
& =(3 \times 3) \times(3 \times 2) \\
& =3^{3} \times 2
\end{aligned}
$$

Highest power of prime factors are 3^{3} and 2^{3}. Hence the LCM of 24 and 54 can be found by multiplying 2^{3} and 3^{3} :

$$
2^{3} \times 3^{3}=216
$$

LCM of 24 and 54 is 216 .
(b) We have

$$
\begin{aligned}
8 & =4 \times 2 \\
& =2 \times 2 \times 2 \\
8 & =2^{3}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
27 & =9 \times 3 \\
& =(3 \times 3) \times 3 \\
27 & =3^{3}
\end{aligned}
$$

Also

$$
\begin{aligned}
64 & =8 \times 8 \\
& =(4 \times 2) \times(4 \times 2) \\
& =2 \times 2 \times 4 \times 4
\end{aligned}
$$

But 4 is not a prime number because $2 \times 2=4$. We have

$$
\begin{aligned}
64 & =\underbrace{2 \times 2 \times(2 \times 2) \times(2 \times 2)}_{6 \text { copies }} \\
& =2^{6}
\end{aligned}
$$

Highest index of each prime factor is 2^{6} and 3^{3} (the 2^{6} overides the 2^{3} for 8). Hence the lowest common multiple of 8,27 and 64 is

$$
2^{6} \times 3^{3}=1728
$$

(c) We know from our 11 times table that $11 \times 11=11^{2}=121$.

Since 5 is the last digit in 125 , we know 5 divides into 125 :

$$
125 \div 5=25
$$

Furthermore $25=5 \times 5$. Hence

$$
\begin{aligned}
125 & =25 \times 5 \\
& =(5 \times 5) \times 5 \\
125 & =5^{3}
\end{aligned}
$$

By solution to question 2 (b) we have

$$
144=2^{4} \times 3^{2}
$$

The highest index of each prime factor is $2^{4}, 3^{2}, 5^{3}$ and 11^{2}. So the lowest common multiple of 121,125 and 144 is

$$
2^{4} \times 3^{2} \times 5^{3} \times 11^{2}=2178000
$$

