Complete solutions to Intro(e)

1.(a) We first have to find the lowest common multiples (LCM) of 2 and 3.

The multiples of 2 and 3 are
2,4,6,8,10,...
3,6,9,12,...
LCM of 2 and 3 is 6 . How do we write $\frac{1}{2}$ with denominator of 6 ?
Multiply numerator and denominator by 3 :

$$
\frac{1}{2}=\frac{1 \times 3}{2 \times 3}=\frac{3}{6}
$$

Similarly multiply numerator and denominator of $\frac{1}{3}$ by 2 :

$$
\frac{1}{3}=\frac{1 \times 2}{3 \times 2}=\frac{2}{6}
$$

Adding the two fractions gives:

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{3} & =\frac{3}{6}+\frac{2}{6} \\
& =\frac{3+2}{6} \\
& =\frac{5}{6}
\end{aligned}
$$

(b) The multiples of 4 and 9 are :
$4,8,12,16,20,24,28,32,36,40,48, \ldots$
$9,18,27, \underline{36}, 45, \ldots$
The LCM of 4 and 9 is 36 . Multiplying the numerator and denominator of $\frac{1}{4}$ by 9 :

$$
\frac{1}{4}=\frac{1 \times 9}{4 \times 9}=\frac{9}{36}
$$

Multiplying the numerator and denominator of $\frac{1}{9}$ by 4 :

$$
\frac{1}{9}=\frac{1 \times 4}{9 \times 4}=\frac{4}{36}
$$

Hence

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{9} & =\frac{9}{36}+\frac{4}{36} \\
& =\frac{9+4}{36} \\
& =\frac{13}{36}
\end{aligned}
$$

(c) Since $6 \times 10=60$ we can write $\frac{1}{6}$ with denominator 60 , how?

Multiply numerator and denominator by 10 :

$$
\frac{1}{6}=\frac{1 \times 10}{6 \times 10}=\frac{10}{60}
$$

So

$$
\begin{aligned}
\frac{1}{6}+\frac{1}{60} & =\frac{10}{60}+\frac{1}{60} \\
& =\frac{10+1}{60} \\
& =\frac{11}{60}
\end{aligned}
$$

Similarly for (d) $\frac{12}{35}$ and (e) $\frac{17}{12}$
2. (a) From solution to question 1(a) we know $\frac{1}{2}=\frac{3}{6}$ and $\frac{1}{3}=\frac{2}{6}$.

Substituting these gives:

$$
\begin{aligned}
\frac{1}{2}-\frac{1}{3} & =\frac{3}{6}-\frac{2}{6} \\
& =\frac{3-2}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

(b) We list the multiplies of 7 and 9:
$7,14,21,28,35,49,56,63,70, \ldots$
$9,18,27,36,45,54,63, \ldots$
Since $7 \times 9=63$, we multiply the numerator and denominator of $\frac{22}{7}$ by 9 :

$$
\frac{22}{7}=\frac{22 \times 9}{7 \times 9}=\frac{198}{63}
$$

Similarly

$$
\frac{16}{7}=\frac{16 \times 7}{9 \times 7}=\frac{112}{63}
$$

We have

$$
\begin{aligned}
\frac{22}{7}-\frac{16}{9} & =\frac{198}{63}-\frac{112}{63} \\
& =\frac{198-112}{63} \\
& =\frac{86}{63}
\end{aligned}
$$

$\frac{86}{63}$ is a top-heavy fraction which we can write as a mixed fraction:

$$
\frac{86}{63}=86 \div 63=1 \text { remainder } 23
$$

So $\frac{86}{63}=1 \frac{23}{63}$. Hence $\frac{22}{7}-\frac{16}{9}=1 \frac{23}{63}$.
(c) Since $29 \times 5=145$, we can express $\frac{41}{29}$ with denominator 145 , how?

Multiply numerator and denominator by 5 :

$$
\frac{41}{29}=\frac{41 \times 5}{29 \times 5}=\frac{205}{145}
$$

Substituting this gives:

$$
\begin{aligned}
\frac{41}{29}-\frac{204}{145} & =\frac{205}{145}-\frac{204}{145} \\
& =\frac{205-204}{145} \\
& =\frac{1}{145}
\end{aligned}
$$

(d) Similarly $\frac{61}{1271}$. (Note that 31 and 41 are prime numbers).
3. (a) We know from solution 1 (a) that $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ so

$$
\begin{aligned}
\underbrace{\frac{1}{2}+\frac{1}{3}}_{=5 / 6}+\frac{1}{6} & =\frac{5}{6}+\frac{1}{6} \\
& =\frac{5+1}{6} \\
& =\frac{6}{6}=1
\end{aligned}
$$

(b) Again $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ so we need to evaluate

$$
\begin{equation*}
\frac{5}{6}-\frac{1}{4}+\frac{1}{5} \tag{*}
\end{equation*}
$$

How can we calculate this fraction?
We have to find the LCM of 4,5 and 6 . The multiplies of 4,5 and 6 are:
$4,8,12,16,20,24,28,32,36,40,44,48,52,56, \underline{6}, 64,68, \ldots$
$5,10,15,20,25,30,35,40,45,50,55, \underline{60}, 65, \ldots$
$6,12,18,24,30,36,42,48,54, \underline{60}, \ldots$
(We could also use prime factorization method). By examining these three lists we see that the LCM of 4,5 and 6 is 60 . Since $4 \times 15=60$, we have:

$$
\frac{1}{4}=\frac{1 \times 15}{4 \times 15}=\frac{15}{60}
$$

Also $5 \times 12=60$ so we have:

$$
\frac{1}{5}=\frac{1 \times 12}{5 \times 12}=\frac{12}{60}
$$

Similarly $6 \times 10=60$:

$$
\frac{5}{6}=\frac{5 \times 10}{6 \times 10}=\frac{50}{60}
$$

Replacing with denominator of 60 for each fraction into (*) we have

$$
\begin{aligned}
\frac{5}{6}-\frac{1}{4}+\frac{1}{5} & =\frac{50}{60}-\frac{15}{60}+\frac{12}{60} \\
& =\frac{50-15+12}{60} \\
& =\frac{47}{60}
\end{aligned}
$$

(c) $\frac{5}{84}$
4. (a) $\frac{1}{2} \times \frac{1}{3}=\frac{1 \times 1}{2 \times 3}=\frac{1}{6}$
(b) 12 and 84 have a common factor because $12 \times 7=84$. So we can cancel 12 's on numerator and denominator:

$$
\frac{17}{12} \times \frac{84}{60}=\frac{17}{12} \times \frac{12 \times 7}{60}=\frac{17 \times 7}{60}=\frac{119}{60}=1 \frac{59}{60}
$$

(c) 235 and 5 have a common factor of 5 . Also 38 and 19 have a common factor of 19 . Before multiplication we can cancel out:

$$
\frac{235}{19} \times \frac{38}{5}=\frac{47 \times 5}{19} \times \frac{19 \times 2}{5}=\frac{47}{1} \times \frac{2}{1}=47 \times 2=94
$$

5. For division we turn the second fraction upside down and then multiply the fractions.
(a) $\frac{1}{2} \div \frac{1}{3}=\frac{1}{2} \times \frac{3}{1}=\frac{1 \times 3}{2 \times 1}=\frac{3}{2}=1 \frac{1}{2}$
(b) $\frac{99}{70} \div \frac{22}{7}=\frac{99}{70} \times \frac{7}{22}$. How can we evaluate this?

Since 70 and 7 have a common factor of 7 , we can perform some cancelling. Also 99 and 22 have a common factor of 11. Hence

$$
\begin{aligned}
\frac{99}{70} \times \frac{7}{22} & =\frac{9}{10} \times \frac{1}{2} \\
& =\frac{9 \times 1}{10 \times 2} \\
& =\frac{9}{20}
\end{aligned}
$$

So $\frac{99}{70} \div \frac{22}{7}=\frac{9}{20}$. Remember cancel down first (if possible) and then multiply.
(c) $\frac{235}{19} \div \frac{5}{38}=\frac{235}{19} \times \frac{38}{5}$. What do you notice?

This is same as question 4(c), so $\frac{235}{19} \div \frac{5}{38}=94$.
6. Use your calculator as described in the text.
(a) $1 \frac{497}{1200}$
(b) $\frac{2}{97}$ (c) $\frac{1}{39780}$
(d) $\frac{1}{6360}$
(e) $2 \frac{1}{288}$
(f) $2 \frac{1}{144}$
(g) $\frac{2870}{2871}$
(h) $\frac{2639}{2640}$

