Complete solutions to Intro(g)

1.(a) The number between 1 and 10 is 1.86. How many places do we need to shift the decimal point?

 $1\underbrace{86000}_{5 \text{ places}}$, 5 places to the left. Hence

$$186\,000 = 1.86 \times 10^{5}$$

(b) Similarly $1\,392\,000 = 1.392 \times 10^6$.

(c) $136\ 000 = 1.36 \times 10^5$

(d) The number between 1 and 10 is 3.439, we need to shift the decimal point:

$$0.\underbrace{000\ 000\ 03}_{439} = 3.439 \times 10^{-3}$$

⁸ places Negative index because we are moving the decimal point to the right (it's a small number).

(e) Similarly $0.000\ 000\ 0951 = 9.51 \times 10^{-8}$

(f) $0.009\ 29 = 9.29 \times 10^{-3}$

(g) $0.000\ 025\ 8 = 2.58 \times 10^{-5}$

(h) 14.96×10^6 is not in standard form, why not?

Because 14.96 is not between 1 and 10, remember the first number needs to lie between 1 and 10. How can we rewrite this number?

$$14.96 = 1.496 \times 10$$

Substituting this into the original number gives:

$$14.96 \times 10^{6} = \underbrace{1.496 \times 10}_{=14.96} \times 10^{6}$$
$$= 1.496 \times 10^{7}$$

(i) $273.15 = 2.7315 \times 10^2$

(j) This number is already in standard form.

2. Write them in conventional form means write out the whole number without a power of 10.

(a) $6.4 \times 10^6 = 6.400000 \times 10^6$, multiplying by 10^6 moves the decimal point 6 places to the right:

$$6.4 \times 10^6 = 6\ 400\ 000$$

(b) We can place as many zeros as we want in front of a number without changing the number:

$$3.3 \times 10^{-9} = 0\ 000\ 000\ 003.3 \times 10^{-9}$$

The index, -9, shifts the decimal point 9 places to the left. Hence $3.3 \times 10^{-9} = 0.000\ 000\ 003\ 3$

(c) Similarly:

$$7.292 \times 10^{-5} = 000\ 007.292 \times 10^{-5}$$
$$= 0.000\ 072\ 92$$

(d) Also

$$3 \times 10^8 = \underbrace{3.000\ 000\ 00}_{=3} \times 10^8$$
$$= 300\ 000\ 000$$

3. (a) Writing the middle numbers in conventional form gives: $12.75 \times 10^2 = 1275$

$$12.75 \times 10^{-3} = 0.012.75 \times 10^{-3} = 0.01275$$

We have 12750, 1275, 0.01275 and 12.75. Putting this in order with smallest first gives 0.01275, 12.75, 1275 and 12750. Hence this is:

$$12.75 \times 10^{-3}$$
, 12.75, 12.75 $\times 10^{2}$ and 12750

(b) Note that $3.14 \div 10^3 = 3.14 \div \frac{10^3}{1} = 3.14 \times \frac{1}{10^3} = 3.14 \times 10^{-3}$

The numbers are 3.14×10^3 , 3.14×10^{-3} and 3.14×10^{-2} , which one is smallest? The more negative an index the smaller the number, so 3.14×10^{-3} is smaller than 3.14×10^{-2} . We have

$$3.14 \times 10^{-3}$$
, 3.14×10^{-2} and 3.14×10^{3} or $3.14 \div 10^{3}$, 3.14×10^{-2} and 3.14×10^{3}
4. Use your calculator for this question. To enter a number with 10^{3} use EXP. EE or E button on the calculator

(a) To evaluate $\frac{1.25 \times 10^3 \times 0.15 \times 348}{15 \times 10^5}$ on a calculator, PRESS;

[(] [1.25] [EXP] [3] [x] [0.15] [x] [348] [)] [÷] [(] [15] [EXP] [5] [)] [=] shows 0.0435=0.04 (2 d.p.).

(b) Similarly by using our calculator we have 1.58.

(c) By using a calculator we have 0.49.

5. Need to write each to the power of 10 and which is a multiple of 3: (a) 100×10^{-12} farads = 100 pF because *p* is the symbol for pico = 10^{-12}

(b) 30000 ohms = $30 \times 10^{3} \Omega = 30k\Omega$ (c) 0.0003 amps = $0.3 \times 10^{-3} A = 0.3mA$

6. (a) $8536N = 8.536 \times 10^{3} N = 8.536kN$ (b) $7500000W = 75 \times 10^{6} W = 75MW$ (c) There is no 10^{12} given in TABLE 2 so we use 10^{9} , how can we write 0.2×10^{12} to the power of 9? $0.2 \times 10^{12} = 0.200 \times 10^{12} = 200 \times 10^{-3} \times 10^{12}$ (†) Let's examine $10^{-3} \times 10^{12} = \frac{1}{10^{3}} \times 10^{12}$ $= \frac{1}{10 \times 10 \times 10} \times (\underbrace{10 \times 10 \times 10 \times ... \times 10}_{12 \text{ copies}})$ $= (\underbrace{10 \times 10 \times ... \times 10}_{9 \text{ copies}})$ cancelling $10 \times 10 \times 10$ $= 10^{9}$

Substituting this into the Right Hand Side of (\dagger) gives: $200 \times 10^{-3} \times 10^{12} = 200 \times 10^{9}$

Hence $0.2 \times 10^{12} Pa = 200 \times 10^{9} Pa = 200 GPa$ (G is giga = 10⁹)

7. Use TABLE 2 and TABLE 3 to see what the symbols represent. (a) 3000 mm = 3000 millimeters $= 3000 \times 10^{-3} m$, this is now in the units of metres but we can simplify this further by writing 3000 as 3×10^{3} . We have

 $3000 \times 10^{-3} = 3 \times 10^{3} \times 10^{-3} = 3 \times 10^{3} \times \frac{1}{10^{3}} = 3$ (cancelling 10³) Hence 3000mm = 3m. (b) $573kN = 573 \times 10^3 N$ (c) $25MJ = 25 \times 10^6 J$ (d) $12 ps = 12 \times 10^{-12} s$ (e) $25mW = 25 \times 10^{-3} W$ 8. (a) The top-heavy fraction $\frac{22}{7}$ can be written as: $\frac{22}{7} \approx \frac{21}{7} = 3$ (b) We can write $\frac{333}{106} \approx \frac{300}{100} = 3$, is a close approximation. (c) $99 \times 99 \approx 100 \times 100 = 10000$ (d) Rounding 714 to 700, 0.63 to 0.6 and 14.45 to 14 gives $\frac{714 \times 0.63}{14.45} \approx \frac{700 \times 0.6}{14}$ Now $700 \times 0.6 = 700 \times \frac{6}{10} = 70 \times 6$. Therefore $\frac{100 \times 0.6}{14} = \frac{70 \times 6}{14}$ $=\frac{420}{14}$ = 30 (because $42 \div 14 = 3$) $\frac{714 \times 0.63}{14.45} \approx 30$