Complete solutions to Intro(g)

1.(a) The number between 1 and 10 is 1.86 . How many places do we need to shift the decimal point?
$\underbrace{186000}_{5 \text { places }}, 5$ places to the left. Hence

$$
186000=1.86 \times 10^{5}
$$

(b) Similarly $1392000=1.392 \times 10^{6}$.
(c) $136000=1.36 \times 10^{5}$
(d) The number between 1 and 10 is 3.439 , we need to shift the decimal point:

$$
0 . \underbrace{000000}_{8 \text { places }} 03439=3.439 \times 10^{-8}
$$

Negative index because we are moving the decimal point to the right (it's a small number).
(e) Similarly $0 . \underbrace{000000}_{8 \text { places }} 0951=9.51 \times 10^{-8}$
(f) $0.00929=9.29 \times 10^{-3}$
(g) $0.0000258=2.58 \times 10^{-5}$
(h) 14.96×10^{6} is not in standard form, why not?

Because 14.96 is not between 1 and 10 , remember the first number needs to lie between 1 and 10 . How can we rewrite this number?

$$
14.96=1.496 \times 10
$$

Substituting this into the original number gives:

$$
\begin{aligned}
14.96 \times 10^{6} & =\underbrace{1.496 \times 10}_{=14.96} \times 10^{6} \\
& =1.496 \times 10^{7}
\end{aligned}
$$

(i) $273.15=2.7315 \times 10^{2}$
(j) This number is already in standard form.
2. Write them in conventional form means write out the whole number without a power of 10 .
(a) $6.4 \times 10^{6}=6.400000 \times 10^{6}$, multiplying by 10^{6} moves the decimal point 6 places to the right:

$$
6.4 \times 10^{6}=6400000
$$

(b) We can place as many zeros as we want in front of a number without changing the number:

$$
3.3 \times 10^{-9}=0000000003.3 \times 10^{-9}
$$

The index, -9 , shifts the decimal point 9 places to the left. Hence

$$
3.3 \times 10^{-9}=0.0000000033
$$

(c) Similarly:

$$
\begin{aligned}
7.292 \times 10^{-5} & =000007.292 \times 10^{-5} \\
& =0.00007292
\end{aligned}
$$

(d) Also

$$
\begin{aligned}
3 \times 10^{8} & =\underbrace{3.00000000}_{=3} \times 10^{8} \\
& =300000000
\end{aligned}
$$

3. (a) Writing the middle numbers in conventional form gives:

$$
\begin{aligned}
& 12.75 \times 10^{2}=1275 \\
& 12.75 \times 10^{-3}=0012.75 \times 10^{-3}=0.01275
\end{aligned}
$$

We have $12750,1275,0.01275$ and 12.75 . Putting this in order with smallest first gives $0.01275,12.75,1275$ and 12750 . Hence this is:

$$
12.75 \times 10^{-3}, 12.75,12.75 \times 10^{2} \text { and } 12750
$$

(b) Note that $3.14 \div 10^{3}=3.14 \div \frac{10^{3}}{1}=3.14 \times \underbrace{\frac{1}{10^{3}}}_{=10^{-3}}=3.14 \times 10^{-3}$

The numbers are $3.14 \times 10^{3}, 3.14 \times 10^{-3}$ and 3.14×10^{-2}, which one is smallest? The more negative an index the smaller the number, so 3.14×10^{-3} is smaller than 3.14×10^{-2}. We have $3.14 \times 10^{-3}, 3.14 \times 10^{-2}$ and 3.14×10^{3} or $3.14 \div 10^{3}, 3.14 \times 10^{-2}$ and 3.14×10^{3}
4. Use your calculator for this question. To enter a number with 10^{3} use EXP, EE or E button on the calculator.
(a) To evaluate $\frac{1.25 \times 10^{3} \times 0.15 \times 348}{15 \times 10^{5}}$ on a calculator, PRESS;
[(] [1.25] [EXP] [3] [x] [0.15] [x] [348] D] [\div] [(] [15] [EXP] [5] D] [=] shows $0.0435=0.04$ ($2 \mathrm{~d} . \mathrm{p}$.).
(b) Similarly by using our calculator we have 1.58 .
(c) By using a calculator we have 0.49 .
5. Need to write each to the power of 10 and which is a multiple of 3:
(a) 100×10^{-12} farads $=100 p F$ because p is the symbol for pico $=10^{-12}$
(b) 30000 ohms $=30 \times \underbrace{103}_{=\text {kilo }} \Omega=30 \mathrm{k} \Omega$
(c) $0.0003 \mathrm{amps}=0.3 \times \underset{=\underset{\text { m(milli) }}{10^{-3}} A=0.3 \mathrm{~mA}}{ }$
6. (a) $8536 \mathrm{~N}=8.536 \times 10^{3} \mathrm{~N}=8.536 \mathrm{kN}$
(b) $75000000 \mathrm{~W}=75 \times 10^{6} \mathrm{~W}=75 \mathrm{MW}$
(c) There is no 10^{12} given in TABLE 2 so we use 10^{9}, how can we write 0.2×10^{12} to the power of 9 ?
$0.2 \times 10^{12}=0.200 \times 10^{12}=200 \times 10^{-3} \times 10^{12}$
Let's examine $10^{-3} \times 10^{12}=\frac{1}{10^{3}} \times 10^{12}$

$$
\begin{aligned}
& =\frac{1}{10 \times 10 \times 10} \times \underbrace{(10 \times 10 \times 10 \times \ldots \times 10)}_{12 \text { copies }} \\
& =\underbrace{(10 \times 10 \times \ldots \times 10)}_{9 \text { copies }} \text { cancelling } 10 \times 10 \times 10 \\
& =10^{9}
\end{aligned}
$$

Substituting this into the Right Hand Side of $\left.{ }^{(} \dagger\right)$ gives:

$$
200 \times 10^{-3} \times 10^{12}=200 \times 10^{9}
$$

Hence $0.2 \times 10^{12} \mathrm{~Pa}=200 \times 10^{9} \mathrm{~Pa}=200 \mathrm{GPa}\left(G\right.$ is giga $\left.=10^{9}\right)$
7. Use TABLE 2 and TABLE 3 to see what the symbols represent.
(a) $3000 \mathrm{~mm}=3000$ millimeters $=3000 \times 10^{-3} \mathrm{~m}$, this is now in the units of metres but we can simplify this further by writing 3000 as 3×10^{3}. We have

$$
3000 \times 10^{-3}=3 \times 10^{3} \times 10^{-3}=3 \times 10^{3} \times \frac{1}{10^{3}}=3\left(\text { cancelling } 10^{3}\right)
$$

Hence $3000 \mathrm{~mm}=3 \mathrm{~m}$.
(b) $573 \mathrm{kN}=573 \times 10^{3} \mathrm{~N}$
(c) $25 \mathrm{MJ}=25 \times 10^{6} \mathrm{~J}$
(d) $12 \mathrm{ps}=12 \times 10^{-12} \mathrm{~s}$
(e) $25 \mathrm{~mW}=25 \times 10^{-3} \mathrm{~W}$
8. (a) The top-heavy fraction $\frac{22}{7}$ can be written as:

$$
\frac{22}{7} \approx \frac{21}{7}=3
$$

(b) We can write $\frac{333}{106} \approx \frac{300}{100}=3$, is a close approximation.
(c) $99 \times 99 \approx 100 \times 100=10000$
(d) Rounding 714 to $700,0.63$ to 0.6 and 14.45 to 14 gives

$$
\frac{714 \times 0.63}{14.45} \approx \frac{700 \times 0.6}{14}
$$

Now $700 \times 0.6=700 \times \frac{6}{10}=70 \times 6$. Therefore

$$
\begin{aligned}
\frac{700 \times 0.6}{14} & =\frac{70 \times 6}{14} \\
& =\frac{420}{14} \\
& =30(\text { because } 42 \div 14=3) \\
\frac{714 \times 0.63}{14.45} & \approx 30
\end{aligned}
$$

