Complete solutions to Intro(h)

1. An object with a velocity of $31 \mathrm{~m} / \mathrm{s}$ means it travels 31 m in one second. First we convert 31 m into km , how?
Divide by 1000 :

$$
31 \div 1000=0.031
$$

So $31 \mathrm{~m}=0.031 \mathrm{~km}$. Therefore the object covers 0.031 km in one second. What distance does it cover in one hour?
Since $3600 s=1$ hour, the object covers $0.031 \times 3600=111.6 \mathrm{~km}$ in one hour. Hence

$$
31 \mathrm{~m} / \mathrm{s}=111.6 \mathrm{~km} / \mathrm{h}
$$

2. Since acceleration is $32.174 \mathrm{feet} / \mathrm{sec}^{2}$ we only need to express 32.174 feet into metres. Since 1 foot $=0.305 \mathrm{~m}$ so

$$
32.174 \times 0.305=9.813
$$

32.174 feet $=9.813 \mathrm{~m}$. Thus

$$
32.174 \mathrm{feet} / \mathrm{sec}^{2}=9.81 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{s.f.})
$$

3 . What does a sound velocity of $342 \mathrm{~m} / \mathrm{s}$ mean?
Sound travels a distance of 342 m in one second. How many miles does it travel in 1 second?
Because $342 \mathrm{~m}=0.342 \mathrm{~km}$ and $1 \mathrm{~km}=0.621$ miles, so the number of miles in one second is:

$$
0.621 \times 0.342=0.2124
$$

Sound travels a distance of 0.2124 miles in one second. How far does it travel in 1 hour?
Since there are 3600 seconds in 1 hour so $0.2124 \times 3600=764.64$
Therefore sound velocity is 765 miles per hour.
4. The density $1206 \mathrm{~kg} / \mathrm{m}^{3}$ means $1 \mathrm{~m}^{3}$ of air has a mass of 1.206 kg . What is the mass in grams?
There are 1000 g in 1 kg so we multiply by 1000 :

$$
1.206 \mathrm{~kg}=1.206 \times 1000 \mathrm{~g}=1206 \mathrm{~g}
$$

Air has a mass of 1206 g for $1 \mathrm{~m}^{3}$. Next we write $1 \mathrm{~cm}^{3}$ in terms of m^{3} :

$$
\begin{aligned}
1 \mathrm{~cm}^{3}=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm} & =0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \\
& =1 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

$1206 \mathrm{~g} / \mathrm{m}^{3}$ in $\mathrm{g} / \mathrm{cm}^{3}$ is:

$$
\begin{aligned}
1206 \times 1 \times 10^{-6} & =1206 \times 10^{-6} \\
& =1.206 \times 10^{3} \times 10^{-6} \\
& =\frac{1.206 \times 10^{3}}{10^{6}} \\
& =\frac{1.206}{10^{3}} \\
& =1.206 \times 10^{-3}
\end{aligned}
$$

Thus

$$
1.206 \mathrm{~kg} / \mathrm{m}^{3}=1.206 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}(4 \text { s.f. })
$$

5. First we express $1 \mathrm{~cm}^{4}$ in terms of m^{4} :

$$
\begin{aligned}
& \begin{aligned}
1 \mathrm{~cm}^{4} & =1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm} \\
& =0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \\
& =1 \times 10^{-8} \mathrm{~m}^{4} \\
0.63 \mathrm{~cm}^{4} & =0.63 \times 1 \times 10^{-8} \mathrm{~m}^{4} \\
& =6.3 \times 10^{-1} \times 10^{-8} \mathrm{~m}^{4} \\
& =6.3 \times 10^{-9} \mathrm{~m}^{4}
\end{aligned} \\
& 0.63 \mathrm{~cm}^{4}=6.3 \mathrm{~nm}^{4} \quad\left(n=\text { nano }=10^{-9}\right)
\end{aligned}
$$

6. We first write 1 foot 2 into m^{2}, how?

Since 1 foot $=0.305 \mathrm{~m}$ we have

$$
\begin{gathered}
1 \text { foot }^{2}=1 \text { foot } \times 1 \text { foot }=0.305 \mathrm{~m} \times 0.305 \mathrm{~m} \\
=0.093025 \mathrm{~m}^{2} \\
5 \text { feet }^{2}=5 \times 0.093025 \mathrm{~m}^{2} \\
=0.465 \mathrm{~m}^{2} \quad(3 \mathrm{s.f.})
\end{gathered}
$$

7. (a) First we write 30 miles in terms of metres (m), how?

Since 1 mile $=1.609 \mathrm{~km}$ we have

$$
30 \text { miles }=30 \times 1.609 \mathrm{~km}=48.27 \mathrm{~km}=48270 \mathrm{~m}
$$

Therefore 30 miles per hour $=48270$ metres per hour. Since we want m / s we have to divide by 3600 s ($=1$ hour):

$$
\frac{4827 \emptyset}{360 \emptyset}=13.4
$$

30 miles per hour $=13.4 \mathrm{~m} / \mathrm{s}$ (3 s.f.)
(b) $80 \mathrm{~km} / \mathrm{h}=\frac{80 \times 1000}{3600} \mathrm{~m} / \mathrm{s}=22.22 \mathrm{~m} / \mathrm{s}$ (2 d.p.)
(c) 186000 miles per second $=186000 \times 1.609 \mathrm{~km} / \mathrm{s}$

$$
\begin{aligned}
& =299274 \mathrm{~km} / \mathrm{s} \\
& =299274 \times 1000 \mathrm{~m} / \mathrm{s} \\
& =299274000 \mathrm{~m} / \mathrm{s} \\
& =2.99 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad(3 \text { s.f. })
\end{aligned}
$$

8. Elasticity is $0.2 \times 10^{11} \mathrm{~N}$ over an area of $1 \mathrm{~m}^{2}$. How do we convert $1 \mathrm{~m}^{2}$ into cm^{2} ?
Using $1 \mathrm{~m}=100 \mathrm{~cm}$ we have

$$
\begin{aligned}
1 \mathrm{~m}^{2}=1 \mathrm{~m} \times 1 \mathrm{~m} & =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& =1 \times 10^{4} \mathrm{~cm}^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
0.2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} & =\left(0.2 \times 10^{11} / 1 \times 10^{4}\right) \mathrm{N} / \mathrm{cm}^{2} \\
& =\left(0.2 \times 10^{11} / 10^{4}\right) \mathrm{N} / \mathrm{cm}^{2} \\
& =2 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}
\end{aligned}
$$

