Complete solutions to Intro(j)

1. Multiply each figure by 100 :
(a) $\frac{1}{1 \emptyset} \times 100=\frac{10}{1}=10 \%$

Use the fraction button on your calculator to write the top-heavy fraction as a mixed fraction:
(b) $\frac{1}{12} \times 100=\frac{100}{12}=8 \frac{1}{3} \%$
(c) $\frac{7}{8} \times 100=\frac{700}{8}=87.5 \%$
(d) $\frac{3}{13} \times 100=\frac{300}{13}=23 \frac{1}{13} \%$

For (e) and (f) move the decimal point two places to the right:
(e) $0.167 \times 100=16.7 \%$
(f) $2.583 \times 100=258.3 \%$
2. Remember \% means out of 100 , so we write each figure out of 100 .

Again use the fraction button on your calculator:
(a) $4 \%=\frac{4}{100}=\frac{1}{25}$
(b) $9 \%=\frac{9}{100}$ (This cannot be simplified any further because 9 and 100 have no factors in common).
(c) $17.5 \%=\frac{17.5}{100}$. Using the fraction button on most calculators for $\frac{17.5}{100}$ displays 0.175 , but we want to write $\frac{17.5}{100}$ as a simplified fraction, how?
We can multiply the numerator and denominator by 10 without changing the fraction:

$$
\frac{17.5}{100}=\frac{17.5 \times 10}{100 \times 10}=\frac{175}{1000}
$$

Enter $\frac{175}{1000}$ into your calculator, the display should show $\frac{7}{40}$.
Hence $17.5 \%=\frac{7}{40}$.
(d) Very similar to (c):

$$
2.5 \%=\frac{2.5}{100}=\frac{25}{1000}=\frac{1}{40}
$$

3. (a) We first evaluate 10% of 900 .

$$
\begin{aligned}
10 \% \text { of } 900 & =\frac{10}{1 \emptyset \emptyset} \times 9 \emptyset \emptyset \\
& =\frac{10 \times 9}{1} \\
& =90
\end{aligned}
$$

How do we calculate $900 \pm 10 \%$?
Since 10% is 90Ω so we plus and minus this to the 900Ω. Hence

$$
\begin{aligned}
900 \pm 10 \% & =900 \pm 90 \\
& =900-90,900+90 \\
& =810,990
\end{aligned}
$$

The range of the resistor is 810Ω to 990Ω.
(b) What is 5% of 1200 ?

$$
\begin{aligned}
5 \% \text { of } 1200 & =\frac{5}{100} \times 1200 \\
& =\frac{5 \times 12}{1} \\
& =60
\end{aligned}
$$

Thus $1200 \pm 5 \%=1200 \pm 60=1200-60,1200+60=1140,1260$.
The range of the resistor is 1140Ω to 1260Ω.
(c) $27 \mathrm{k} \Omega=27000 \Omega$ because k represent kilo $\left(10^{3}=1000\right)$.

$$
\begin{aligned}
1 \% \text { of } 27000 & =\frac{1}{10 \emptyset} \times 27000 \\
& =270
\end{aligned}
$$

The range is $27000-270$ to $27000+270$. Hence 26730Ω to 27270Ω.
(d) Again $19 \mathrm{k} \Omega=19000 \Omega$.

$$
\begin{aligned}
3 \% \text { of } 19000= & \frac{3}{100} \times 19000 \\
& =\frac{3 \times 190}{1} \\
& =570
\end{aligned}
$$

The resistor value lies between $19000-570$ to $19000+570$. Thus the range is 18430Ω to 19570Ω.
(e) $5 \mathrm{M} \Omega=5000000 \Omega$ because $\mathrm{M}=$ mega $=10^{6}=1000000$.

$$
\begin{aligned}
0.15 \% \text { of } 5000000 & =\frac{0.15}{10 \emptyset} \times 5000000 \\
= & 0.15 \times 50000 \\
= & 7500
\end{aligned}
$$

Range is $5000000-7500$ to $5000000+7500$. Hence 4992500Ω to 5007500Ω.
4.

$$
\begin{aligned}
4.5 \% \text { of } 120= & \frac{4.5}{100} \times 120 \\
& =\frac{4.5 \times 12}{10} \\
& =5.4
\end{aligned}
$$

The range of speed is $120 \pm 5.4=120-5.4,120+5.4$

$$
=114.6, \quad 125.4
$$

Hence range is $114.6 \mathrm{~km} / \mathrm{h}$ to $125.4 \mathrm{~km} / \mathrm{h}$.
5. We have to evaluate 0.15% of 3.567 :

$$
\begin{aligned}
0.15 \% \text { of } 3.567 & =\frac{0.15}{100} \times 3.567 \\
& =\frac{0.15 \times 3.567}{100} \\
& =5.35 \times 10^{-3}
\end{aligned}
$$

Since the bar expands we add 5.35×10^{-3} to the original length 3.567 , hence the new length of the bar is $3.567+\left(5.35 \times 10^{-3}\right)=3.572 \mathrm{~m}$ (4 s.f.)
6. Putting exact value $=342$, experimental value $=345$ into (0.1) gives:

$$
\begin{aligned}
\% \text { error } & =\frac{345-342}{342} \times 100 \\
& =\frac{3}{342} \times 100 \\
& =0.9 \% ~(1 \text { s.f. })
\end{aligned}
$$

7. Use a calculator. We can write $0.005=5 \times 10^{-3}$. Subtract 0.57% of this to obtain the new volume. On a calculator, PRESS;
[5] [EXP] [(-)] [3] [×] [0.57] [SHIFT] [=] [-] shows 4.9715 ${ }^{-03}$.
Rounding this gives the new volume as $4.97 \times 10^{-3} \mathrm{~m}^{3}$ (3 s.f.)
8 . The expansion is given by the difference, $0.38-0.35=0.03$. We need to write 0.03 m as a percentage of the original length, hence

$$
\frac{0.03}{0.35} \times 100=8.6 \%(2 \text { s.f. })
$$

9. Remember $25 \mathrm{~mA}=25 \times 10^{-3} \mathrm{~A}$ (because $m=$ milli $=10^{-3}$). We need to evaluate 4.3% of 25×10^{-3} :

$$
\frac{4.3}{100} \times\left(25 \times 10^{-3}\right)=1.075 \times 10^{-3}
$$

The highest value is evaluated by adding the original value, 25 mA , and 1.075×10^{-3} :

$$
\begin{aligned}
\text { Highest value } & =\left(25 \times 10^{-3}\right)+\left(1.075 \times 10^{-3}\right) \\
& =26.075 \times 10^{-3} \\
& =26.1 \mathrm{~mA}
\end{aligned}
$$

(0.1) $\quad \%$ error $=\frac{\text { experimental value }- \text { exact value }}{\text { exact value }} \times 100$

