Complete solutions to Intro(j)

1. Multiply each figure by 100: (a) $\frac{1}{10} \times 100 = \frac{10}{1} = 10\%$

Use the fraction button on your calculator to write the top-heavy fraction as a mixed fraction:

(b)
$$\frac{1}{12} \times 100 = \frac{100}{12} = 8\frac{1}{3}\%$$

(c) $\frac{7}{8} \times 100 = \frac{700}{8} = 87.5\%$
(d) $\frac{3}{13} \times 100 = \frac{300}{13} = 23\frac{1}{13}\%$

For (e) and (f) move the decimal point two places to the right:

- (e) $0.167 \times 100 = 16.7\%$
- (f) $2.583 \times 100 = 258.3\%$

2. Remember % means out of 100, so we write each figure out of 100. Again use the fraction button on your calculator:

(a)
$$4\% = \frac{4}{100} = \frac{1}{25}$$

(b) $9\% = \frac{9}{100}$ (This cannot be simplified any further because 9 and 100

have no factors in common).

(c) $17.5\% = \frac{17.5}{100}$. Using the fraction button on most calculators for $\frac{17.5}{100}$ displays 0.175, but we want to write $\frac{17.5}{100}$ as a simplified fraction, how?

We can multiply the numerator and denominator by 10 without changing the fraction:

$$\frac{17.5}{100} = \frac{17.5 \times 10}{100 \times 10} = \frac{175}{1000}$$

Enter $\frac{175}{1000}$ into your calculator, the display should show $\frac{7}{40}$. Hence $17.5\% = \frac{7}{40}$.

(d) Very similar to (c):

$$2.5\% = \frac{2.5}{100} = \frac{25}{1000} = \frac{1}{400}$$

3. (a) We first evaluate 10% of 900.

10% of 900 =
$$\frac{10}{100} \times 900$$

= $\frac{10 \times 9}{1}$
= 90

How do we calculate $900 \pm 10\%$?

Since 10% is 90 so we plus and minus this to the 900 Ω . Hence $900\pm10\%=900\pm90$

$$=900-90, 900+90$$

= 810, 990

The range of the resistor is 810Ω to 990Ω . (b) What is 5% of 1200?

5% of 1200 =
$$\frac{5}{100} \times 1200$$

= $\frac{5 \times 12}{60}$
= 60^{1}

Thus $1200 \pm 5\% = 1200 \pm 60 = 1200 - 60$, 1200 + 60 = 1140, 1260. The range of the resistor is 1140Ω to 1260Ω .

(c) $27 \text{ k}\Omega = 27000\Omega$ because k represent kilo $(10^3 = 1000)$.

1% of 27000 =
$$\frac{1}{100} \times 27000$$

= 270

The range is 27000 - 270 to 27000 + 270. Hence 26730Ω to 27270Ω . (d) Again 19 k Ω = 19000 Ω .

3% of 19000 =
$$\frac{3}{100} \times 19000$$

= $\frac{3 \times 190}{1}$
= 570

The resistor value lies between 19000-570 to 19000+570 . Thus the range is 18430Ω to 19570Ω .

(e) $5 \text{ M}\Omega = 5000000\Omega$ because M = mega = $10^6 = 1000000$.

$$0.15\% \text{ of } 500000 = \frac{0.15}{100} \times 5000000$$
$$= 0.15 \times 50000$$
$$= 7500$$

Range is 500000 - 7500 to 500000 + 7500. Hence 4992500Ω to 5007500Ω . 4.

4.5% of
$$120 = \frac{4.5}{100} \times 120$$

= $\frac{4.5 \times 12}{10}$
= 5.4
The range of speed is $120 \pm 5.4 = 120 - 5.4$, $120 + 5.4$
= 114.6 , 125.4
Hence range is 114.6 km/h to 125.4 km/h.

5. We have to evaluate 0.15% of 3.567:

0.15% of 3.567 =
$$\frac{0.15}{100} \times 3.567$$

= $\frac{0.15 \times 3.567}{100}$
= 5.35×10^{-3}

Since the bar expands we add 5.35×10^{-3} to the original length 3.567, hence the new length of the bar is $3.567 + (5.35 \times 10^{-3}) = 3.572$ m (4 s.f.)

6. Putting exact value = 342, experimental value = 345 into (0.1) gives:
% error =
$$\frac{345 - 342}{342} \times 100$$

= $\frac{3}{342} \times 100$
= 0.9% (1 s.f.)

7. Use a calculator. We can write $0.005 = 5 \times 10^{-3}$. Subtract 0.57% of this to obtain the new volume. On a calculator, PRESS;

[5] [EXP] [(-)] [3] [×] [0.57] [SHIFT] [=] [-] shows 4.9715^{-03} . Rounding this gives the new volume as $4.97 \times 10^{-3} m^3$ (3 s.f.)

8. The expansion is given by the difference, 0.38 - 0.35 = 0.03. We need to write 0.03m as a percentage of the original length, hence

$$\frac{0.03}{0.35} \times 100 = 8.6\% \ (2 \text{ s.f.})$$

9. Remember $25mA = 25 \times 10^{-3} A$ (because $m = \text{milli} = 10^{-3}$). We need to evaluate 4.3% of 25×10^{-3} :

$$\frac{4.3}{100} \times (25 \times 10^{-3}) = 1.075 \times 10^{-3}$$

The highest value is evaluated by adding the original value, 25mA, and 1.075×10^{-3} :

Highest value =
$$(25 \times 10^{-3}) + (1.075 \times 10^{-3})$$

= 26.075 × 10⁻³
= 26.1 mA

% error = $\frac{\text{experimental value} - \text{exact value}}{\text{exact value}} \times 100$

(0.1)