Complete solutions to Intro(k)

1. (a) What do 10 and 100 have in common?

A common factor of 10 . Divide both by 10 :

$$
\begin{aligned}
& 100 \div 10=10 \\
& 10 \div 10=1
\end{aligned}
$$

We have 100:10=10:1.
(b) 23 is a common factor of 69 and 23 . Divide both by 23 .

$$
69 \div 23=3
$$

$$
23 \div 23=1
$$

Hence 69:23=3:1.
(c) What is a common factor of 5,25 and 45?

Obviously 5, dividing all three numbers by 5:

$$
5 \div 5=1,25 \div 5=5 \text { and } 45 \div 5=9
$$

Hence 5:25:45=1:5:9.
(d) What do 6, 42, 54 and 72 have in common?

A factor of 6 . Dividing each by 6 :

$$
6 \div 6=1,42 \div 6=7,54 \div 6=9 \text { and } 72 \div 6=12
$$

Hence 6:42:54:72 $=1: 7: 9: 12$.
(e) It is easier to use whole numbers rather than fractions. What is the lowest common multiple of 3 and 6 ?
6 , multiply both fractions by 6 :

$$
\frac{2}{3} \times 6=4, \frac{5}{6} \times 6=5
$$

Hence $\frac{2}{3}: \frac{5}{6}=4: 5$.
2. (a) We can write ratio as a division. We have

$$
1 \frac{1}{5}: 2 \frac{1}{4}=1 \frac{1}{5} \div 2 \frac{1}{4}
$$

$1 \frac{1}{5} \div 2 \frac{1}{4}$ on a calculator gives $\frac{8}{15}$, hence

$$
1 \frac{1}{5}: 2 \frac{1}{4}=8: 15
$$

(b) Similarly evaluating $3 \frac{1}{2} \div 2 \frac{5}{12}$ on a calculator gives $1 \frac{13}{29}$ which we can write as a top-heavy fraction:

$$
1 \frac{13}{29}=\frac{(1 \times 29)+13}{29}=\frac{42}{29}
$$

Hence $3 \frac{1}{2}: 2 \frac{5}{12}=42: 29$.
3. (a) Multiplying 0.4 and 0.5 by 10 :

$$
0.4 \times 10=4 \text { and } 0.5 \times 10=5
$$

$0.4: 0.5=4: 5$.
(b) How do we convert 0.52 and 0.72 into whole numbers?

Multiply by 100 :

$$
\begin{aligned}
& 0.52 \times 100=52 \\
& 0.72 \times 100=72
\end{aligned}
$$

Thus $0.52: 0.72=52: 72$. What do 52 and 72 have in common?
A factor of 4 , dividing by 4 :

$$
52 \div 4=13 \text { and } 72 \div 4=18
$$

We have $52: 72=13: 18$ so

$$
0.52: 0.72=13: 18
$$

(c) We need to write $\sqrt{8}$ in terms of $\sqrt{2}$, if possible?

$$
\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \sqrt{2}=2 \sqrt{2}
$$

We have $\sqrt{2}: \sqrt{8}=\sqrt{2}: 2 \sqrt{2}$. That is $\sqrt{2}$ and $\sqrt{8}$ have a common factor of $\sqrt{2}$, so dividing both by $\sqrt{2}$:

$$
\begin{aligned}
& \sqrt{2} \div \sqrt{2}=1 \\
& \sqrt{8} \div \sqrt{2}=2 \sqrt{2} \div \sqrt{2}=\frac{2 \sqrt{2}}{\sqrt{2}}=2
\end{aligned}
$$

Therefore $\sqrt{2}: \sqrt{8}=1: 2$.
4. What is the total number of parts?

$$
2+3+5=10
$$

We divide length $0.64 m$ into 10 equal parts:

$$
0.64 \div 10=0.064 \mathrm{~m}
$$

Since the ratio is $2: 3: 5$ we multiply $0.064 m$ by 2,3 and 5 to give the length of each piece:

$$
\begin{aligned}
& 2 \times 0.064 m=0.128 m \\
& 3 \times 0.064 m=0.192 m \\
& 5 \times 0.064 m=0.32 m
\end{aligned}
$$

5. The total number of parts is $8+3=11$, so the mass of each part is $66 \mathrm{~kg} \div 11=6 \mathrm{~kg}$
Since copper is 8 parts, we multiply 6 kg by 8 :

$$
\text { copper mass }=6 \mathrm{~kg} \times 8=48 \mathrm{~kg}
$$

Zinc is 3 parts, so

$$
\text { zinc mass }=6 \mathrm{~kg} \times 3=18 \mathrm{~kg}
$$

6. What is the total number of parts?

$$
3+4+6=13
$$

We divide 45.5 kg into 13 equal parts:

$$
45.5 \div 13=3.5
$$

There is 3.5 kg in each part, so

$$
\begin{gathered}
\text { copper mass } 3 \times 3.5 \mathrm{~kg}=10.5 \mathrm{~kg} \\
\text { zinc mass } 4 \times 3.5 \mathrm{~kg}=14 \mathrm{~kg} \\
\text { nickel mass } 6 \times 3.5 \mathrm{~kg}=21 \mathrm{~kg}
\end{gathered}
$$

7. The total number of parts is $2+3+5+4=14$.

The number of students in each part is evaluated by dividing 1260 by 14 :

$$
1260 \div 14=90
$$

There are 90 students in each part.
Number of students in manufacturing $=2 \times 90=180$
Number of students in building services $=3 \times 90=270$
Number of students in vehicle $=5 \times 90=450$
Number of students in control $=4 \times 90=360$

