Complete solutions to Exercise 7(e)

1. (a) The gradient, m, of the tangent is evaluated by differentiating $y=x^{2}-3$:

$$
\frac{d y}{d x}=2 x
$$

At $x=2, \frac{d y}{d x}=2 \times 2=4$
So $m=4$. Equation of tangent is of the form $y=4 x+c$. At
$x=2, y=2^{2}-3=1$ so the tangent goes through the point $(2,1)$, that is when $x=2, y=1$.

$$
1=(4 \times 2)+c \text { gives } c=-7
$$

Equation of tangent is $y=4 x-7$.
By (7.13), the gradient of normal $=-\frac{1}{4}$.
Equation of normal is of the form, $y=-\frac{1}{4} x+c_{1}$, and it also goes through the point $(2,1)$, that is $x=2$ and $y=1$. We have

$$
1=\left(-\frac{1}{4} \times 2\right)+c_{1} \text { gives } c_{1}=\frac{3}{2}
$$

Equation of normal is $y=-\frac{1}{4} x+\frac{3}{2}=\frac{6}{4}-\frac{1}{4} x=\frac{1}{4}(6-x) \quad$ [Factorizing]
(b) Differentiating $y=\cos (x)$ gives:

$$
\frac{d y}{d x}=-\sin (x)
$$

At $x=\frac{\pi}{2}, \frac{d y}{d x}=-\sin \left(\frac{\pi}{2}\right)=-1$. The gradient, $m=-1$, so the equation of the tangent has the form

$$
y=-x+c
$$

How can we find c ?
The tangent goes through the point $x=\frac{\pi}{2}$ and $y=\cos \left(\frac{\pi}{2}\right)=0$. Substituting these into $y=-x+c$ yields:

$$
0=-\frac{\pi}{2}+c \text { gives } \quad c=\frac{\pi}{2}
$$

Hence the equation of the tangent is

$$
y=-x+\frac{\pi}{2}=\frac{\pi}{2}-x
$$

How do we find the equation of the normal?
By (7.13) the gradient of the normal $=\frac{-1}{-1}=1$. Equation of the normal has the form

$$
y=x+c_{1}
$$

and also goes through the point $\left(\frac{\pi}{2}, 0\right)$ that is $x=\frac{\pi}{2}, y=0$.

$$
\text { (7.13) } \quad \text { Gradient of normal }=-\frac{1}{m}
$$

$$
0=\frac{\pi}{2}+c_{1} \text { gives } \quad c_{1}=-\frac{\pi}{2}
$$

Equation of normal is $y=x-\frac{\pi}{2}$.
(c) Differentiating $y=e^{x}$ gives $\frac{d y}{d x}=e^{x}$.

Substituting $x=1, \frac{d y}{d x}=e^{1}=e$
The gradient of the tangent $=e$ and is of the form

$$
\begin{equation*}
y=e x+c \tag{*}
\end{equation*}
$$

Substituting $x=1$ into $y=e^{x}$ gives $y=e^{1}=e$, so the tangent goes through the point $x=1, y=e$ or ($1, e$). Putting these values into (*)

$$
e=e(1)+c \text { gives } c=0
$$

Therefore the equation of the tangent is $y=e x$.
What is the gradient of the normal?
By (7.13):

$$
\text { gradient }=-\frac{1}{e}=-e^{-1}
$$

Equation of normal is of the form

$$
\begin{equation*}
y=-e^{-1} x+c_{1} \tag{**}
\end{equation*}
$$

and it also goes through the point $x=1, y=e$.

$$
e=-e^{-1}(1)+c_{1}
$$

Making c_{1} the subject

$$
c_{1}=e+e^{-1}
$$

Substituting this into $\left({ }^{* *}\right)$ gives the equation of the normal:

$$
\begin{aligned}
y & =-e^{-1} x+\left(e+e^{-1}\right) \\
& =e+e^{-1}(1-x)
\end{aligned}
$$

(d) Differentiating $y=\ln (x)$ gives

$$
\frac{d y}{d x}=\frac{1}{x}
$$

At $x=1, \frac{d y}{d x}=\frac{1}{1}=1$
The gradient of tangent $=1$ and is of the form $y=x+c$.
At $x=1, y=\ln (1)=0$. The tangent goes through $(1,0)$, hence

$$
0=1+c \text { gives } c=-1
$$

Equation of tangent is $y=x-1$.
Gradient of normal $=-1$. Hence $y=-x+c_{1}$. The normal goes through the point $(1,0)$, so we have

$$
0=-1+c_{1} \text { therefore } c_{1}=1
$$

Equation of normal is $y=-x+1=1-x$.
(7.13) \quad Gradient of normal $=-\frac{1}{m}$
2. Since the tangent is a straight line relationship between i and v we have

$$
\begin{equation*}
i=m v+c \tag{*}
\end{equation*}
$$

where m is the gradient and c is the i intercept. The gradient at $v=1.6$ is given by differentiating $i=v^{3}$:

$$
m=\frac{d i}{d v}=3 v^{2}
$$

Substituting $v=1.6$ gives

$$
m=3 \times 1.6^{2}=7.68
$$

Thus putting this into $\left({ }^{*}\right)$ gives:

$$
\begin{equation*}
i=7.68 v+c \tag{**}
\end{equation*}
$$

How can we find c ?
We know at $v=1.6, i=1.6^{3}=4.096$ (substituting v into the original equation).
Using (**)

$$
4.096=(7.68 \times 1.6)+c \text { gives } c=-8.19
$$

Hence the equation of the tangent is

$$
i=7.68 v-8.19
$$

3. Expanding the brackets:

$$
i=2-2 e^{-2000 t}
$$

An expression for the gradient of the tangent is given by

$$
\begin{aligned}
\frac{d i}{d t} & =0-\underbrace{[2 \times(-2000)] e^{-2000 t}}_{\text {by (6.11) }} \\
& =4000 e^{-2000 t}
\end{aligned}
$$

At $t=1 \times 10^{-3}$,

$$
\frac{d i}{d t}=4000 \times e^{-2000 \times\left(\left[1 \times 10^{-3}\right)\right.}=541.34 \quad(=\text { gradient })
$$

The equation of tangent is of the form

$$
\begin{equation*}
i=541.34 t+c \tag{*}
\end{equation*}
$$

We need to find c. The tangent goes through a value of $t=1 \times 10^{-3}$, so

$$
i=2-2 e^{-\left(2000 \times 1 \times 10^{-3}\right)}=1.73
$$

The tangent goes through the point $t=1 \times 10^{-3}$ and $i=1.73$.
Substituting these into (*):

$$
1.73=\left(541.34 \times 1 \times 10^{-3}\right)+c \text { gives } c=1.19
$$

Hence

$$
i=541.34 t+1.19
$$

$$
\begin{equation*}
\left(e^{k x}\right)^{\prime}=k e^{k x} \tag{6.11}
\end{equation*}
$$

