Complete solutions to Exercise 8(f)

1. (a) Which formula do we use to write

$$
\frac{3 x+4}{(x+1)(x+2)}
$$

into partial fractions?
Use (8.48)

$$
\begin{equation*}
\frac{3 x+4}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2} \tag{†}
\end{equation*}
$$

Multiplying both sides by $(x+1)(x+2)$ gives:

$$
\begin{equation*}
3 x+4=A(x+2)+B(x+1) \tag{}
\end{equation*}
$$

How do we determine the constants A and B ?
Put $x=-2$ into $(*)$

$$
\begin{aligned}
{[3 \times(-2)]+4 } & =0+B(-2+1) \\
-2 & =-B \text { gives } B=2
\end{aligned}
$$

To find A, put $x=-1$ into (*)

$$
[3 \times(-1)]+4=A(-1+2)+0 \text { gives } 1=A
$$

Substituting $A=1$ and $B=2$ into (\dagger) gives the partial fractions

$$
\frac{3 x+4}{(x+1)(x+2)}=\frac{1}{x+1}+\frac{2}{x+2}
$$

(b) First we need to factorize the denominator:

$$
t^{2}-1=(t-1)(t+1)
$$

By applying (8.48) we have

$$
\frac{2 t}{t^{2}-1}=\frac{2 t}{(t-1)(t+1)}=\frac{A}{t-1}+\frac{B}{t+1}
$$

Multiplying both sides by $(t-1)(t+1)$:

$$
\begin{equation*}
2 t=A(t+1)+B(t-1) \tag{*}
\end{equation*}
$$

Substituting $t=-1$ into $\left({ }^{*}\right)$ produces

$$
\begin{aligned}
2 \times(-1) & =0+B(-1-1) \\
-2 & =-2 B \text { gives } B=1
\end{aligned}
$$

Substituting $t=1$ into (*) gives

$$
\begin{aligned}
(2 \times 1) & =A(1+1)+0 \\
2 & =2 A \\
A & =1
\end{aligned}
$$

Putting $A=1$ and $B=1$ into (\dagger)

$$
\frac{2 t}{t^{2}-1}=\frac{1}{t-1}+\frac{1}{t+1}
$$

(c) Factorizing the denominator:

$$
s^{2}+s-2=(s+2)(s-1)
$$

We have

$$
\begin{equation*}
\frac{f(x)}{(a x+b)(c x+d)}=\frac{A}{a x+b}+\frac{B}{c x+d} \tag{8.48}
\end{equation*}
$$

$$
\frac{2 s+7}{s^{2}+s-2}=\frac{2 s+7}{(s+2)(s-1)} \underset{\text { by }}{(8,48)}=\frac{A}{s+2}+\frac{B}{s-1}
$$

Thus

$$
\begin{equation*}
2 s+7=A(s-1)+B(s+2) \tag{*}
\end{equation*}
$$

Need to find A and B. Put $s=1$ into (*)

$$
\begin{aligned}
2+7 & =0+B(1+2) \\
9 & =3 B \\
B & =3
\end{aligned}
$$

Put $s=-2$ into $(*)$:

$$
\begin{aligned}
{[2 \times(-2)]+7 } & =A(-2-1)+0 \\
3 & =-3 A \\
A & =-1
\end{aligned}
$$

Substituting $A=-1$ and $B=3$ into (\dagger) gives

$$
\frac{2 s+7}{s^{2}+s-2}=\frac{3}{s-1}-\frac{1}{s+2}
$$

(d) We have

$$
\frac{-12 u-13}{(2 u+1)(u-3)}=\frac{A}{2 u+1}+\frac{B}{u-3}
$$

Multiplying both sides by $(2 u+1)(u-3)$:

$$
\begin{equation*}
-12 u-13=A(u-3)+B(2 u+1) \tag{*}
\end{equation*}
$$

Putting $u=3$ into (*):

$$
\begin{aligned}
(-12 \times 3)-13 & =0+B[(2 \times 3)+1] \\
-49 & =7 B \\
B & =-7
\end{aligned}
$$

Putting $u=-\frac{1}{2}$ into $\left({ }^{*}\right)$ gives

$$
6-13=A\left(-\frac{1}{2}-3\right)+0,-7=-\frac{7}{2} A \text { gives } A=2
$$

Substituting $A=2$ and $B=-7$ into (\dagger) :

$$
\frac{-12 u-13}{(2 u+1)(u-3)}=\frac{2}{2 u+1}-\frac{7}{u-3}
$$

2. (a) Since the degree of x^{2} and $x+1$ is 2 and 1 respectively, we need to apply long division because it is an improper fraction.

\[

\]

Using (8.52) with $q(x)=x-1$ and $R(x)=1$ we have

$$
\frac{x^{2}}{x+1}=x-1+\frac{1}{x+1}
$$

(b) The degree of $x^{5}-2 x^{2}$ is 5 and degree of $x^{2}-1$ is 2 .

Hence we need to employ long division.

$$
\begin{aligned}
& \frac{x^{3}+x-2}{x ^ { 2 } - 1 \longdiv { x ^ { 5 } - 2 x ^ { 2 } }} \\
& \frac{x^{5}-x^{3}}{x^{3}-2 x^{2}} \\
& \frac{x^{3}-x}{-2 x^{2}+x} \\
& \frac{-2 x^{2}+2}{x-2}
\end{aligned}
$$

Applying (8.52) gives:

$$
\frac{x^{5}-2 x^{2}}{x^{2}-1}=x^{3}+x-2+\frac{x-2}{x^{2}-1}
$$

Is this our final answer or can we put $(\dagger$) into more partial fractions?
Since $x^{2}-1$ factorizes we can place the last term, $\frac{x-2}{x^{2}-1}$, into partial fractions. We have

$$
x^{2}-1=x^{2}-1^{2}=(x-1)(x+1)
$$

Which formula, (8.48) - (8.51), do we use to write

$$
\frac{x-2}{x^{2}-1}=\frac{x-2}{(x-1)(x+1)}
$$

into partial fractions?
Use (8.48)

$$
\frac{x-2}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}
$$

Multiplying both sides by $(x-1)(x+1)$:

$$
\begin{equation*}
x-2=A(x+1)+B(x-1) \tag{*}
\end{equation*}
$$

Substituting $x=1$ into (${ }^{*}$):

$$
\begin{aligned}
1-2 & =A(1+1)+B(0) \\
-1 & =2 A \quad \text { gives } \quad A=-\frac{1}{2}
\end{aligned}
$$

Substituting $x=-1$ into (${ }^{*}$):

$$
\begin{aligned}
-1-2 & =0+B(-1-1) \\
-3 & =-2 B \text { gives } B=\frac{3}{2}
\end{aligned}
$$

$$
\begin{align*}
& \frac{f(x)}{(a x+b)(c x+d)}=\frac{}{a} \tag{8.48}\\
& \frac{f(x)}{g(x)}=q(x)+\frac{R(x)}{g(x)}
\end{align*}
$$

Putting these into $(\dagger \dagger)$ gives:

$$
\frac{x-2}{(x-1)(x+1)}=\frac{-\frac{1}{2}}{x-1}+\frac{\frac{3}{2}}{x+1}=\frac{1}{2}\left[\frac{3}{x+1}-\frac{1}{x-1}\right]
$$

Substituting into (\dagger) :

$$
\frac{x^{5}-2 x^{2}}{x^{2}-1}=x^{3}+x-2+\frac{1}{2}\left[\frac{3}{x+1}-\frac{1}{x-1}\right]
$$

3. (a) Which formula do we use to put

$$
\frac{4 t^{2}+t-3}{\left(t^{2}+t-1\right)(t-1)}
$$

into partial fractions?
(8.51)

$$
\frac{4 t^{2}+t-3}{\left(t^{2}+t-1\right)(t-1)}=\frac{A t+B}{t^{2}+t-1}+\frac{C}{t-1}
$$

Multiplying both sides by $\left(t^{2}+t-1\right)(t-1)$ gives:

$$
\begin{equation*}
4 t^{2}+t-3=(A t+B)(t-1)+C\left(t^{2}+t-1\right) \tag{}
\end{equation*}
$$

Is this our final solution?
No, we need to find A, B and C. Putting $t=1$ into (*) gives

$$
\begin{aligned}
4+1-3 & =0+C\left(1^{2}+1-1\right) \\
2 & =C
\end{aligned}
$$

How can we find A and B ?
Equate coefficients of t^{2}. (The number of t^{2} on the Left Hand Side of the $=s i g n$ in $\left(^{*}\right)$ is same as the number of t^{2} on the Right Hand Side of the $=\operatorname{sign}$).

$$
\begin{aligned}
& 4=A+C \\
& 4=A+2 \\
& A=2
\end{aligned}
$$

We already know $C=2$, so

Next we equate coefficients of t :

$$
1=\underset{\substack{\text { This is onatinea bye expanding } \\ \text { the brackes in in (y) }}}{-A B}
$$

We know $A=2$ and $C=2$, so

$$
\begin{aligned}
& 1=-2+B+2 \\
& B=1
\end{aligned}
$$

Substituting $A=2, B=1$ and $C=2$ into (\dagger) gives

$$
\frac{4 t^{2}+t-3}{\left(t^{2}+t-1\right)(t-1)}=\frac{2 t+1}{t^{2}+t-1}+\frac{2}{t-1}
$$

(b) By using (8.49) we have

$$
\begin{align*}
& \frac{f(z)}{(a z+b)^{2}}=\frac{A}{a z+b}+\frac{B}{(a z+b)^{2}} \tag{8.49}\\
& \frac{f(t)}{\left(a t^{2}+b t+c\right)(d t+e)}=\frac{A t+B}{a t^{2}+b t+c}+\frac{C}{d t+e} \tag{8.51}
\end{align*}
$$

$$
\frac{z+1}{(z-1)^{2}}=\frac{A}{z-1}+\frac{B}{(z-1)^{2}}
$$

Multiplying (\dagger) by $(z-1)^{2}$ gives

$$
\begin{equation*}
z+1=A(z-1)+B \tag{}
\end{equation*}
$$

Putting $z=1$ into (*) gives

$$
\begin{aligned}
& 2=0+B \\
& B=2
\end{aligned}
$$

Equating coefficients of z in (*) gives

$$
1=A
$$

Substituting $A=1$ and $B=2$ into (\dagger) :

$$
\frac{z+1}{(z-1)^{2}}=\frac{1}{z-1}+\frac{2}{(z-1)^{2}}
$$

(c) Which formula do we use to put

$$
\frac{2 x^{3}+3 x^{2}+5 x+2}{\left(x^{2}+x+1\right)^{2}}
$$

into partial fractions?
Use repeated factor

$$
\frac{2 x^{3}+3 x^{2}+5 x+2}{\left(x^{2}+x+1\right)^{2}}=\frac{A x+B}{x^{2}+x+1}+\frac{C x+D}{\left(x^{2}+x+1\right)^{2}}
$$

Multiplying both sides of (\dagger) by $\left(x^{2}+x+1\right)^{2}$ we have

$$
\begin{align*}
2 x^{3}+3 x^{2}+5 x+2 & =(A x+B)\left(x^{2}+x+1\right)+(C x+D) \\
& =A x^{3}+A x^{2}+A x+B x^{2}+B x+B+(C x+D) \\
2 x^{3}+3 x^{2}+5 x+2 & =A x^{3}+(A+B) x^{2}+(A+B+C) x+B+D \tag{*}
\end{align*}
$$

How do we find A, B, C and D ?
We can equate coefficients of powers of x. Consider the highest power first, x^{3}.
There are 2 on the left and A on the right

$$
2=A
$$

How many x^{2} on the left of the $=\operatorname{sign}$ in $(*)$?

$$
3
$$

The number of x^{2} on the right of the $=\operatorname{sign}$ in $\left({ }^{*}\right)$ is \qquad

$$
A+B
$$

Thus equating coefficients of x^{2} gives

$$
3=A+B
$$

We know $A=2$, so $B=1$.
Next we equate coefficients of x in (*):

$$
5=A+B+C
$$

Putting $A=2$ and $B=1$ gives

$$
\begin{aligned}
& 5=2+1+C \\
& C=2
\end{aligned}
$$

Equating coefficients of constants in (*):

$$
2=B+D
$$

$B=1$ so $D=1$
Substituting $A=2, B=1, C=2$ and $D=1$ into (\dagger) gives the partial fractions:

$$
\frac{2 x^{3}+3 x^{2}+5 x+2}{\left(x^{2}+x+1\right)^{2}}=\frac{2 x+1}{x^{2}+x+1}+\frac{2 x+1}{\left(x^{2}+x+1\right)^{2}}
$$

