Complete Solutions to Miscellaneous Exercise 1

1. Cancel out $\frac{1}{2} \rho$ to give $\frac{v^{2}-u^{2}}{v^{2}}=\frac{v^{2}}{v^{2}}-\frac{u^{2}}{v^{2}}=1-\frac{u^{2}}{v^{2}}=1-\left(\frac{u}{v}\right)^{2}$
2. We have

$$
\begin{aligned}
P_{2}-P_{1} & =\rho g\left(d-d_{2}\right)-\rho g\left(d-d_{1}\right) \\
& \left.=\rho g\left[d-d_{2}-\left(d-d_{1}\right)\right] \text { taking out the common factor } \rho \mathrm{g}\right) \\
& =\rho g[\underbrace{d-\mathrm{d}}_{=0}-\mathrm{d}_{2}+\mathrm{d}_{1}] \\
& =\rho g\left(d_{1}-d_{2}\right) \\
& =-\rho g\left(d_{2}-d_{1}\right)
\end{aligned}
$$

3. We have

$$
h=\frac{v_{2}}{g}\left(v_{2}-v_{1}\right)-\frac{v_{2}^{2}-v_{1}^{2}}{2 g}
$$

To obtain a common denominator of 2 g , multiply the first term of the Right Hand Side by $\frac{2}{2}(=1)$:

$$
\begin{aligned}
& h=\frac{2 v_{2}}{2 g}\left(v_{2}-v_{1}\right)-\frac{v_{2}^{2}-v_{1}^{2}}{2 g} \\
& =\frac{1}{2 g}\left[2 v_{2}\left(v_{2}-v_{1}\right)-\left(v_{2}^{2}-v_{1}^{2}\right)\right] \\
& =\frac{1}{2 g}\left[2 \text { takingoutthe }_{\text {common factor }}\left[2 v_{2}^{2}-2 v_{2} v_{1}-v_{2}^{2}+v_{1}^{2}\right]\right. \\
& =\frac{1}{2 g}\left[v_{1}^{2}-2 v_{1} v_{2}+v_{2}^{2}\right] \\
& =\frac{1}{2 g}[\underbrace{\left[v_{1}-v_{2}\right]^{2}}_{\text {by } 1.14)} \\
& h=\frac{\left(v_{1}-v_{2}\right)^{2}}{2 g}
\end{aligned}
$$

4. We have 41, 43, 47, 53, 61 and 71. All answers are prime numbers.
5. (a) Straightforward substitution gives $f_{0}=2.25 \mathrm{kHz}$.
(b) First transpose the formula to make C the subject:

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Taking inverse of both sides gives

$$
2 \pi \sqrt{L C}=\frac{1}{f_{0}}
$$

$$
\begin{equation*}
a^{2}-2 a b+b^{2}=(a-b)^{2} \tag{1.14}
\end{equation*}
$$

Dividing both sides by 2π gives

$$
\begin{aligned}
& \sqrt{L C}=\frac{1}{2 \pi f_{0}} \\
& L C=\left(\frac{1}{2 \pi f_{0}}\right)^{2}=\frac{1}{\left(2 \pi f_{0}\right)^{2}} \\
& C=\frac{1}{\left(2 \pi f_{0}\right)^{2} L}
\end{aligned}
$$

To find the value for C substitute $f_{0}=1000$ and $L=1 \times 10^{-3}$

$$
\begin{aligned}
C & =\frac{1}{(2 \pi \times 1000)^{2} \times\left(1 \times 10^{-3}\right)} \\
& =25.3 \mu \mathrm{~F}
\end{aligned}
$$

6. Simple transform of formula.
7. Substitute the values and add to find $\frac{1}{R}$ and then take the inverse to obtain $\mathrm{R}=1000 \Omega$.
8. We can factorize the Right Hand Side to give

$$
\begin{aligned}
& D=\frac{1}{2} \rho A\left(C_{D}+k C_{L}^{2}\right) v^{2} \\
& 2 D=\rho A\left(C_{D}+k C_{L}^{2}\right) v^{2}
\end{aligned}
$$

Divide both sides by $\rho A\left(C_{D}+k C_{L}^{2}\right)$;

$$
\begin{aligned}
& v^{2}=\frac{2 D}{\rho A\left(C_{D}+k C_{L}^{2}\right)} \\
& v=\sqrt{\frac{2 D}{\rho A\left(C_{D}+k C_{L}^{2}\right)}}
\end{aligned}
$$

9. Factorize the $\frac{1}{2}$ I and then multiply both sides by 2 and eventually divide through by $v_{1}^{2}-v_{2}^{2}$ to give $I=\frac{2 E}{v_{1}^{2}-v_{2}^{2}}$.
10. We have

$$
\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+h_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+h_{2}
$$

Subtract $\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}$ and h_{1} from both sides:

$$
\begin{aligned}
\frac{v_{1}^{2}}{2 g} & =\frac{p_{2}}{\rho g}-\frac{p_{1}}{\rho g}+\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}}{2 g} \\
& =\frac{p_{2}-p_{1}}{\rho g}+\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}}{2 g}
\end{aligned}
$$

Multiply both sides by 2 g

$$
\begin{aligned}
v_{1}^{2} & =2 g \frac{\left(p_{2}-p_{1}\right)}{\rho g}+2 g\left(h_{2}-h_{1}\right)+2 g \frac{v_{2}^{2}}{2 g} \\
& =\left[\frac{2\left(p_{2}-p_{1}\right)}{\rho}\right]+2 g\left(h_{2}-h_{1}\right)+v_{2}^{2}
\end{aligned}
$$

So taking the square root gives

$$
v_{1}=\left[\frac{2\left(p_{2}-p_{1}\right)}{\rho}+2 g\left(h_{2}-h_{1}\right)+v_{2}^{2}\right]^{1 / 2}
$$

11. (a) $5 x=1$ gives $x=\frac{1}{5}$
(b) $3 x+2=8$ leads to $3 x=8-2=6, x=\frac{6}{3}=2$
(c) $(x-1)(x+2)=0$ gives

$$
\begin{gathered}
x-1=0 \text { or } x+2=0 \\
x=1 \text { or } x=-2
\end{gathered}
$$

(d) $(3 x-1)(2 x+3)=0$ gives

$$
\begin{array}{r}
3 x-1=0 \text { or } 2 x+3=0 \\
3 x=1 \text { or } 2 x=-3 \\
x=\frac{1}{3} \text { or } x=-\frac{3}{2}
\end{array}
$$

12. Substituting $\mathrm{y}=10, \mathrm{u}=14$ into the equation gives

$$
\begin{aligned}
10 & =14 t-\left(\frac{1}{2} \times 9.8 \times t^{2}\right) \\
& =14 t-4.9 t^{2}
\end{aligned}
$$

Rearranging

$$
\begin{equation*}
4.9 t^{2}-14 t+10=0 \tag{*}
\end{equation*}
$$

How do we find t ?
(*) is a quadratic equation so use formula (1.16) with $\mathrm{a}=4.9, \mathrm{~b}=-14$ and $\mathrm{c}=10$.

$$
\begin{aligned}
t & =\frac{14 \pm \sqrt{(-14)^{2}-(4 \times 4.9 \times 10)}}{2 \times 4.9} \\
& =\frac{14 \pm 0}{9.8} \\
t & =1.43 \mathrm{~s}
\end{aligned}
$$

13. Squaring both sides of u gives

$$
\begin{equation*}
u^{2}=\frac{2 \gamma P_{1} V_{1}}{\gamma-1}\left[1-\frac{P_{2}}{P_{1}} \cdot \frac{V_{2}}{V_{1}}\right] \tag{}
\end{equation*}
$$

From the question we have

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

$$
\begin{aligned}
& P_{2} V_{2}^{\gamma}=P_{1} V_{1}^{\gamma} \\
& \frac{V_{2}^{\gamma}}{V_{1}^{\gamma}}=\frac{P_{1}}{P_{2}} \\
& \left(\frac{V_{2}}{V_{1}}\right)^{\gamma}=\frac{P_{1}}{P_{2}} \\
& \frac{V_{2}}{V_{1}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{\gamma}}
\end{aligned}
$$

Substituting $\frac{V_{2}}{V_{1}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{\gamma}}$ into $1-\frac{P_{2}}{P_{1}} \cdot \frac{V_{2}}{V_{1}}$ gives

$$
\begin{aligned}
1-\frac{P_{2}}{P_{1}} \cdot \frac{V_{2}}{V_{1}} & =1-\frac{P_{2}}{P_{1}}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{\gamma}} \\
& =1-\frac{P_{2}}{P_{1}}\left(\frac{P_{2}}{P_{1}}\right)^{-\frac{1}{\gamma}} \\
& =1-\underbrace{\left(\frac{P_{2}}{P_{1}}\right)^{1-\frac{1}{\gamma}}}_{\text {by }(1.5)}
\end{aligned}
$$

Putting this into (*) gives

$$
u^{2}=\frac{2 \gamma P_{1} V_{1}}{\gamma-1}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{1-\frac{1}{\gamma}}\right]
$$

To evaluate u we need to find P_{2} first, how?
Use

$$
\begin{aligned}
P_{2} V_{2}^{\gamma} & =P_{1} V_{1}^{\gamma} \\
P_{2} & =P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}
\end{aligned}
$$

Substitute

$$
\gamma=1.39, P_{1}=5.2 \times 10^{6}, V_{1}=3.1 \times 10^{-3}, V_{2}=5 \times 10^{-3}
$$

into the above

$$
P_{2}=\left(5.2 \times 10^{6}\right)\left(\frac{3.1 \times 10^{-3}}{5 \times 10^{-3}}\right)^{1.39}=2.68 \times 10^{6}
$$

and $\mathrm{P}_{2}=2.68 \times 10^{6}$ into (\dagger) gives

$$
\begin{aligned}
u^{2} & =\frac{\left(2 \times 1.39 \times 5.2 \times 10^{6} \times 3.1 \times 10^{-3}\right)}{1.39-1}\left[1-\left(\frac{2.68 \times 10^{6}}{5.2 \times 10^{6}}\right)^{1-\frac{1}{1.39}}\right] \\
& =114906.67\left[1-\left(\frac{2.68}{5.2}\right)^{0.28}\right] \\
& =19464.12 \\
u & =140 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

14. By transposing and expanding you result in a quadratic $\mathrm{R}^{2}+8 \mathrm{R}-39=0$. Use (1.16) with $a=1, b=8$ and $c=-3$ to give $\mathrm{R}=3.42 \Omega$.
15.(a)

$$
\begin{gathered}
x^{2}-7 x+10=(x-5)(x-2)=0 \\
x-5=0 \text { or } x-2=0 \\
x=5 \text { or } x=2
\end{gathered}
$$

(b) By (1.15)

$$
x^{2}-1=(x-1)(x+1)=0 \quad \text { which gives } x=1, x=-1
$$

(c) $2 \mathrm{x}^{2}-3 \mathrm{x}+1=(2 \mathrm{x}-1)(\mathrm{x}-1)=0$. So we have

$$
\begin{gathered}
2 x-1=0, x-1=0 \\
x=\frac{1}{2}, x=1
\end{gathered}
$$

(d) $15 x^{2}-x-2=(5 x-2)(3 x+1)=0$. This gives

$$
\begin{gathered}
5 x-2=0,3 x+1=0 \\
5 x=2,3 x=-1 \\
x=\frac{2}{5}, x=-\frac{1}{3}
\end{gathered}
$$

(e) First divide through by -100 , so we have

$$
\begin{aligned}
& x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& \quad x=3, x=1
\end{aligned}
$$

16. Use TABLE 1. You should get all coefficients into $M^{0} L^{0} T^{0}$ -
dimensionless.
17. Factorize by taking out the common factor of $\frac{w}{36 E I}$:

$$
y=\frac{w}{36 E I}\left(x^{4}-4 L x^{3}+L^{4}\right)
$$

18. (i) Straightforward transposition gives $P=\frac{n^{2} \pi^{2} E I}{L^{2}} \quad$ (ii) $P=12 \times 10^{6} \mathrm{~N}$

$$
\begin{equation*}
a^{2}-b^{2}=(a-b)(a+b) \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

19. (a) Put $\mathrm{a}=1, \mathrm{~b}=3$ and $\mathrm{c}=1$ into (1.16) to solve $\mathrm{x}^{2}+3 \mathrm{x}+1=0$:

$$
\begin{aligned}
x & =\frac{-3 \pm \sqrt{9-(4 \times 1 \times 1)}}{2} \\
& =\frac{-3 \pm \sqrt{5}}{2} \\
x & =\frac{-3+\sqrt{5}}{2} \text { or } x=\frac{-3-\sqrt{5}}{2} \\
x & =-0.38 \text { or } x=-2.62
\end{aligned}
$$

(b) Similarly put $\mathrm{a}=1, \mathrm{~b}=4$ and $\mathrm{c}=2$ into (1.16), hence

$$
x=-0.59, x=-3.41
$$

(c) With $\mathrm{a}=5, \mathrm{~b}=2$ and $\mathrm{c}=-1$ into (1.16) gives $x=0.29, x=-0.69$.
(d) With $\mathrm{a}=-2, \mathrm{~b}=-3$ and $\mathrm{c}=1$ into (1.16) gives $\mathrm{x}=0.28, \mathrm{x}=-1.78$.
20. We have

$$
\begin{aligned}
C & =\frac{F_{0}}{k-m \alpha^{2}} \\
& \sum_{\substack{\text { divide numeator } \\
\text { and denominator by }}} \quad \frac{F_{0} / k}{1-\frac{m \alpha^{2}}{k}} \\
& =\frac{F_{0} / k}{1-\frac{\alpha^{2}}{k / m}} \\
& =\frac{F_{0} / k}{1-\frac{\alpha^{2}}{\omega^{2}}} \quad \text { because } \quad \omega=\sqrt{k / m} \\
& =\frac{F_{0} / k}{1-r^{2}} \quad \text { because } \quad r=\frac{\alpha}{\omega}
\end{aligned}
$$

21. Expand the brackets and solve the simultaneous equations to give $I_{1}=0.022 \mathrm{~A}$ and $I_{2}=0.07 \mathrm{~A}$.
22. Equating $\mathrm{P}=\rho \mathrm{RT}$ and $\mathrm{P}=\mathrm{k} \rho^{\gamma}$ gives

$$
\begin{aligned}
& \rho R T=k \rho^{\gamma} \\
& \frac{\rho^{\gamma}}{\rho}=\frac{R T}{k} \text { which gives } \underbrace{\rho^{\gamma-1}}_{\text {by (1.6) }}=\frac{R T}{k}
\end{aligned}
$$

Substituting $\rho^{\gamma-1}=\frac{\mathrm{RT}}{\mathrm{k}}$ into $\mathrm{v}=\left(\gamma \mathrm{k} \rho^{\gamma-1}\right)^{\frac{1}{2}}$ gives

$$
\begin{aligned}
v & =\left[\gamma k\left(\frac{R T}{k}\right)\right]^{\frac{1}{2}} \\
& =(\gamma R T)^{\frac{1}{2}} \\
v & =\sqrt{\gamma R T}
\end{aligned}
$$

(1.6) $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

23. Taking out the Q gives

$$
\begin{aligned}
& d_{1}^{2}-d_{2}^{2}=\frac{2 Q^{2}}{g}\left(\frac{1}{d_{2}}-\frac{1}{d_{1}}\right) \\
& \underbrace{\left(d_{1}-d_{2}\right)\left(d_{1}+d_{2}\right)}_{\text {by }(1.15)}=\frac{2 Q^{2}}{g}\left(\frac{d_{1}-d_{2}}{d_{1} d_{2}}\right)
\end{aligned}
$$

Divide both sides by $\left(d_{1}-d_{2}\right)$:

$$
\begin{equation*}
d_{1}+d_{2}=\frac{2 Q^{2}}{g d_{1} d_{2}} \tag{*}
\end{equation*}
$$

We are also given

$$
\begin{aligned}
F & =\frac{Q}{\sqrt{g d_{1}^{3}}} \\
Q & =F \sqrt{g d_{1}^{3}}
\end{aligned}
$$

Squaring both sides gives

$$
Q^{2}=F^{2} g d_{1}^{3}
$$

Substituting this into (*) gives

$$
\begin{aligned}
d_{1}+d_{2} & =\frac{2 F^{2} g d_{1}^{3}}{g d_{1} d_{2}} \\
& =\frac{2 F^{2} d_{1}^{2}}{d_{2}}
\end{aligned}
$$

Multiplying both sides by d_{2} :

$$
d_{2}^{2}+d_{2} d_{1}=2 F^{2} d_{1}^{2}
$$

Dividing both sides by d_{1}^{2} gives

$$
\begin{align*}
& \frac{d_{2}^{2}+d_{2} d_{1}}{d_{1}^{2}}=2 F^{2} \\
& \frac{d_{2}^{2}}{d_{1}^{2}}+\frac{d_{2} d_{1}}{d_{1}^{2}}=2 F^{2} \\
& \left(\frac{d_{2}}{d_{1}}\right)^{2}+\frac{d_{2}}{d_{1}}-2 F^{2}=0 \tag{**}
\end{align*}
$$

Putting $x=\frac{d_{2}}{d_{1}}$ into $\left({ }^{(* *)}\right.$ we have a quadratic equation $x^{2}+x-2 F^{2}=0$
How do we solve for x ?
Use formula (1.16) with $a=1, b=1$ and $c=-2 F^{2}$

$$
\begin{align*}
x & =\frac{-1 \pm \sqrt{1-\left[4 \times\left(-2 F^{2}\right)\right]}}{2} \\
& =\frac{-1 \pm \sqrt{1+8 F^{2}}}{2} \tag{1.16}
\end{align*}
$$

$$
\begin{equation*}
a^{2}-b^{2}=(a-b)(a+b) \tag{1.15}
\end{equation*}
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Putting $\mathrm{x}=\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}$ as before we obtain our result

$$
\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}=\frac{1}{2}\left[-1 \pm \sqrt{1+8 \mathrm{~F}^{2}}\right]
$$

24. (a) $x=1, y=1$
(b) $x=58 / 5, y=-33 / 5$
(c) $x=1.77, y=0.85$
25. From $\omega^{2}=\frac{J G}{I L}$ we have

$$
L=\frac{J G}{\omega^{2} I}
$$

Substituting this into $\alpha^{2}=\frac{J G}{\left(I+2 m r^{2}\right) L}$ gives

$$
\begin{aligned}
\alpha^{2} & =\frac{J G}{\left(I+2 m r^{2}\right) \frac{J G}{\omega^{2} I}} \\
& =\frac{\omega^{2} I}{I+2 m r^{2}}
\end{aligned}
$$

Multiplying both sides by $I+2 m r^{2}$ gives

$$
\begin{aligned}
& \left(I+2 m r^{2}\right) \alpha^{2}=\omega^{2} I \\
& I \alpha^{2}+2 m r^{2} \alpha^{2}=\omega^{2} I \\
& \omega^{2} I-\alpha^{2} I=2 m r^{2} \alpha^{2} \\
& I\left(\omega^{2}-\alpha^{2}\right)=2 m r^{2} \alpha^{2} \\
& I=\frac{2 m r^{2} \alpha^{2}}{\omega^{2}-\alpha^{2}}
\end{aligned}
$$

26. Use formula (1.16) with $a=m, b=\zeta$ and $c=-3$. For the second part we have

$$
\begin{aligned}
1-\frac{4 m k}{\zeta^{2}} & =0 \\
\zeta^{2} & =4 m k \\
\zeta & =\sqrt{4 m k} \\
& =2 \sqrt{m k}
\end{aligned}
$$

Ignore the negative root because $\zeta>0$ in question.
27. Apply transposition.
28. Put $x=\omega^{2}$ into the given equation to get

$$
\begin{aligned}
& x^{2}-402 x+800=0\left(\text { remember } x^{2}=\left(\omega^{2}\right)^{2}=\omega^{4}\right) \\
& (x-400)(x-2)=0 \\
& x=400, x=2
\end{aligned}
$$

Putting back $\omega^{2}=x$ we get

$$
\omega^{2}=400, \omega^{2}=2
$$

Thus

$$
\omega_{1}=20, \omega_{2}=-20, \omega_{3}=\sqrt{2} \text { and } \omega_{4}=-\sqrt{2}
$$

Remember the square root gives a positive and negative root.
29.Putting $\mathrm{y}=\omega^{2}$ into the given equation

$$
\omega^{4}-2\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \omega^{2}+\left(\frac{g^{2}}{\ell^{2}}+\frac{2 k x^{2} g}{m \ell^{3}}\right)=0
$$

gives

$$
y^{2}-2\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) y+\left(\left(\frac{g}{\ell}\right)^{2}+\frac{2 k x^{2} g}{m \ell^{3}}\right)=0
$$

Solve for y by using (1.16) with $a=1, b=-2\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right)$ and $c=\left(\frac{g}{\ell}\right)^{2}+\frac{2 k x^{2} g}{m \ell^{3}}$:

$$
\begin{align*}
y & =\frac{2\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \pm \sqrt{4\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right)^{2}-4\left[\left(\frac{g}{\ell}\right)^{2}+\frac{2 k x^{2} g}{m \ell^{3}}\right]}}{2} \\
& =\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \pm \sqrt{\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right)^{2}-\left(\frac{g}{\ell}\right)^{2}-\frac{2 k x^{2} g}{m \ell^{3}}}
\end{align*}
$$

We can simplify the expression under the square root:

$$
\begin{aligned}
& \left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right)^{2}-\left(\frac{g}{\ell}\right)^{2}-\frac{2 k x^{2} g}{m \ell^{3}} \\
= & \underbrace{\left(\frac{g}{\ell}\right)^{2}+2 \frac{g}{\ell} \frac{k x^{2}}{m \ell^{2}}+\left(\frac{k x^{2}}{m \ell^{2}}\right)^{2}}_{\text {by (1.13) }}-\left(\frac{g}{\ell}\right)^{2}-\frac{2 k x^{2} g}{m \ell^{3}} \\
= & \left(\frac{k x^{2}}{m \ell^{2}}\right)^{2} \quad \text { (the other terms cancel out). }
\end{aligned}
$$

Substituting this into (\dagger) gives

$$
\begin{aligned}
y & =\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \pm \sqrt{\left(\frac{k x^{2}}{m \ell^{2}}\right)^{2}} \\
& =\left(\frac{g}{\ell}+\frac{k x^{2}}{m \ell^{2}}\right) \pm \frac{k x^{2}}{m \ell^{2}} \\
y & =\frac{g}{\ell}+\underbrace{\frac{k x^{2}}{m \ell^{2}}+\frac{k x^{2}}{m \ell^{2}}}_{=\frac{2 k x^{2}}{m \ell^{2}}} \text { or } y=\frac{g}{\ell}+\underbrace{\frac{k x^{2}}{m \ell^{2}}-\frac{k x^{2}}{m \ell^{2}}}_{=0}
\end{aligned}
$$

So $y=\frac{g}{\ell}+\frac{2 k x^{2}}{m \ell^{2}}$ or $y=\frac{g}{\ell}$
Remember $\mathrm{y}=\omega^{2}$; So

$$
\omega= \pm \sqrt{\frac{\mathrm{g}}{\ell}+\frac{2 \mathrm{kx}^{2}}{\mathrm{~m} \ell^{2}}}, \omega= \pm \sqrt{\frac{\mathrm{g}}{\ell}}
$$

(1.13) $\quad(a+b)^{2}=a^{2}+2 a b+b^{2} \quad$ (1.16) $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\omega_{1}=\sqrt{\frac{g}{\ell}}, \omega_{2}=-\omega_{1}, \omega_{3}=\sqrt{\frac{g}{\ell}+\frac{2 k x^{2}}{m \ell^{2}}} \text { and } \omega_{4}=-\omega_{3}
$$

30. Make L the subject of $k L^{2}=Z$, substitute into w to obtain formula.
31. Taking out the common factor of $\frac{\mathrm{w}}{6}$ on the Right Hand Side gives

$$
E I y=\frac{w}{6}\left[(L-x) L-\frac{(L-x)^{3}}{L}\right]
$$

Dividing both sides by EI gives

$$
y=\frac{w}{6 E I}\left[(L-x) L-\frac{(L-x)^{3}}{L}\right]
$$

By question we know $w \neq 0$ and $E I \neq 0$ so the expression in the square brackets must equal zero to give zero deflection, $y=0$. Thus

$$
(L-x) L-\frac{(L-x)^{3}}{L}=0
$$

What do you notice about Left Hand Side?
$(\mathrm{L}-\mathrm{x})$ is common to both terms because $(L-x)^{3} \underset{\text { by }}{\underset{(1.5)}{=}}(L-x)(L-x)^{2}$
So we take out the common factor

$$
(L-x)\left[L-\frac{(L-x)^{2}}{L}\right]=0
$$

We know have $(L-x)=0$ or $\left[L-\frac{(L-x)^{2}}{L}\right]=0$. The first equation gives $x=L$.
How can we find x in the second equation $\left[L-\frac{(L-x)^{2}}{L}\right]=0$?
Multiplying both sides by L gives

$$
L^{2}-(L-x)^{2}=0
$$

Expanding the second term:

$$
\begin{aligned}
& L^{2}-\underbrace{\left(L^{2}-2 L x+x^{2}\right)}_{\text {by }(1.14)}=0 \\
& \underbrace{L^{2}-L^{2}}_{=0}+2 L x-x^{2}=0
\end{aligned}
$$

Taking out the common factor of x :

$$
\begin{aligned}
& x(2 L-x)=0 \\
& x=0 \text { or } x=2 L
\end{aligned}
$$

The deflection is zero at $x=0$ and $x=L$. Also x cannot equal $2 L$ because the length of the beam is L.

$$
\begin{align*}
& a^{m} a^{n}=a^{m+n} \tag{1.5}\\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \tag{1.14}
\end{align*}
$$

