Complete Solutions to Exercise 1(c)

1. Straightforward application of the rules of indices.
(a) $x^{5} x^{2}=x^{5+2}=x^{7}$
(b) $x^{\frac{1}{5}} x^{\frac{1}{2}}=x^{\frac{1}{5}+\frac{1}{2}}=x^{\frac{2}{10}+\frac{5}{10}}=x^{\frac{7}{10}}$
(c) $\frac{x^{3}}{x^{3}}=1$
(d) $\frac{x^{7}}{x^{9}}=x^{7-9}=x^{-2}=\frac{1}{x^{2}}$
(e) $(\sqrt[5]{x})^{2} \sqrt[3]{x}=x^{\frac{2}{5}} x^{\frac{1}{3}}=x^{\frac{2}{5}+\frac{1}{3}}=x^{\frac{6}{15}+\frac{5}{15}}=x^{\frac{11}{15}}$
(f) $\sqrt{x^{2}} \sqrt[3]{x^{3}}=x x=x^{2}$
(g) $\sqrt[7]{x^{3} x^{4}}=\sqrt[7]{x^{3+4}}=\sqrt[7]{x^{7}}=x$
2. (a) $(1+y)^{2}(1+y)=(1+y)^{2+1}=(1+y)^{3} \quad$ (Take $\mathrm{a}=1+\mathrm{y}$ in formula (1.5)).
(b) $\frac{\left(1+x^{2}\right)^{5}}{\left(1+x^{2}\right)^{3}} \underset{\text { by }(1.6)}{=}\left(1+x^{2}\right)^{5-3}=\left(1+x^{2}\right)^{2}$
(c) The expression cannot be simplified any further because the terms under the cube root are different. However we can rewrite it as:

$$
\left(\sqrt[3]{x^{2}+x+1}\right)^{5}\left(\sqrt[3]{x^{2}+x}\right)=\underbrace{\left(x^{2}+x+1\right)^{\frac{5}{3}}}_{\text {by }(1.2) \operatorname{and}(1.7)} \underbrace{\left(x^{2}+x\right)^{\frac{1}{3}}}_{\text {by }(1.2)}
$$

(d) In this case we have the same terms so

$$
\begin{aligned}
&\left(\sqrt[3]{x^{2}+x+1}\right)^{5}\left(\sqrt[3]{x^{2}+x+1}\right)=\left(x^{2}+x+1\right)^{\frac{5}{3}}\left(x^{2}+x+1\right)^{\frac{1}{3}} \\
&=\left(x^{2}+x+1\right)^{\frac{5}{3}+\frac{1}{3}} \\
& \begin{array}{c}
\text { yy }(1.5) \text { with } \\
a=x^{2}+x+1
\end{array} \\
&=\left(x^{2}+x+1\right)^{2}
\end{aligned}
$$

(e) We cannot simplify the given expression any further because we have different expressions under the square root signs $-\sqrt{x^{2}+2 x} \sqrt{x^{2}+x}$.
3. Similar to EXAMPLE 12. $\mathrm{V}_{2}=0.734 \mathrm{~m}^{3}$.
4. Substitute for C into W and apply the rules of indices.
5. Rearranging $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$ we have

$$
\begin{equation*}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2} \mathrm{~V}_{2}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} \tag{*}
\end{equation*}
$$

From the other formula, $P_{1} V_{1}{ }^{n}=P_{2} V_{2}{ }^{n}$, we have $\frac{V_{1}{ }^{n}}{V_{2}{ }^{n}}=\frac{P_{2}}{P_{1}}$ and so
(1.2) $\sqrt[n]{a}=a^{\frac{1}{n}}$
(1.5) $\quad a^{m} a^{n}=a^{m+n}$
(1.6) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(1.7) $\quad\left(a^{m}\right)^{n}=a^{m \times n}$

$$
\left(\frac{V_{1}}{V_{2}}\right)^{n}=\frac{P_{2}}{P_{1}}
$$

Taking the nth root gives

$$
\begin{aligned}
\left(\frac{V_{1}}{V_{2}}\right) & =\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}} \\
\frac{T_{1}}{T_{2}} & =\frac{P_{1}}{P_{2}}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}} \\
& =\frac{P_{1}}{P_{2}} \underbrace{}_{\text {by }(\frac{1.4)}{\left(\frac{P_{1}}{P_{2}}\right)^{-\frac{1}{n}}}=\underbrace{\left(\frac{P_{1}}{P_{2}}\right)^{1-\frac{1}{n}}}_{\text {by }(1.5)}}=\frac{1}{2}
\end{aligned}
$$

6. We have

$$
\begin{aligned}
\frac{\rho_{2}}{\rho_{1}} & =\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g}{L C}}\left(\frac{T_{1}}{T_{2}}\right) \\
& =\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g}{L C}} \underbrace{\left(\frac{T_{2}}{T_{1}}\right)^{-1}}_{\text {by (1.4) }} \\
& =\underbrace{\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g}{L C}-1}}_{\text {by }(1.5)}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{g-L C}{L C}}
\end{aligned}
$$

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{-1}=\frac{b}{a} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
a^{m} a^{n}=a^{m+n} \tag{1.5}
\end{equation*}
$$

