Complete solutions to Exercise 11(e)

1. Similar to EXAMPLE 23. Let A be the matrix of coefficients:

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 3 & 5 \\
7 & -1 & 1 \\
2 & 3 & -8
\end{array}\right)
$$

We need to find the determinant of this matrix:

$$
\begin{aligned}
& \operatorname{det} \mathbf{A}=1 \operatorname{det}\left(\begin{array}{cc}
-1 & 1 \\
3 & -8
\end{array}\right)-3 \operatorname{det}\left(\begin{array}{cc}
7 & 1 \\
2 & -8
\end{array}\right)+5 \operatorname{det}\left(\begin{array}{cc}
7 & -1 \\
2 & 3
\end{array}\right) \\
& \underset{\text { by (11.1) }}{=}(8-3)-3(-56-2)+5(21+2)=294
\end{aligned}
$$

Since $\operatorname{det} \mathbf{A} \neq 0$ so by (11.16) we only have the trivial solution

$$
x=0, y=0, z=0
$$

2. Solving the equations by the inverse matrix method gives $x=1, y=1$. To check if this solution is unique we test whether the following matrix has a non zero determinant:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right) \\
\operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)=(2 \times 5)-(4 \times 3)=-2 \neq 0
\end{gathered}
$$

By (11.13) $x=1, y=1$ is the unique solution of the given equations.
3 . We can write the given equations as $\mathbf{A u}=\mathbf{b}$ where

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right), \mathbf{u}=\binom{x}{y}, \mathbf{b}=\binom{0}{0}
$$

We can find the determinant of \mathbf{A} by using (11.1):

$$
\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right)=(2 \times 2)-(4 \times 1)=0
$$

By (11.15) there are an infinite number of solutions for

$$
\begin{align*}
& 2 x+y=0 \tag{*}\\
& 4 x+2 y=0 \tag{**}
\end{align*}
$$

From (*) we have

$$
y=-2 x
$$

The general solution is $x=a, y=-2 a$ where a is any real number.
4. For the solution to be unique, $\operatorname{det} \mathbf{A} \neq 0$ where \mathbf{A} is the matrix of coefficients.
For question 1(a), let $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & -3 \\ 2 & -1 & -1 \\ 3 & 2 & 1\end{array}\right)$ and so the determinant is given by

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & -1 & -1 \\
3 & 2 & 1
\end{array}\right)=1 \operatorname{det}\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)-2 \operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right)-3 \operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right)=-30
$$

Since $\operatorname{det} \mathbf{A}=-30 \neq 0$ the solution to the given equations is unique.

Similarly for (b) $\operatorname{det} \mathbf{A}=8 \quad$ (c) $\operatorname{det} \mathbf{A}=-8$
Therefore the solutions are unique.
For question 4; $\mathbf{A}=\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -2 & 1\end{array}\right)$, $\operatorname{det} \mathbf{A}=3$. The solution is unique.
For question 5; $\mathbf{A}=\left(\begin{array}{ccc}1 & 1 & 0 \\ -3 & 0 & 1 \\ 0 & -2 & 1\end{array}\right)$, $\operatorname{det} \mathbf{A}=5$. Solution is unique.
5. (a) For a non trivial solution we need

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

Using the given \mathbf{A} we have

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =\operatorname{det}\left[\left(\begin{array}{cc}
-1 & 1 \\
9 & -1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \\
& =\operatorname{det}\left[\left(\begin{array}{cc}
-1 & 1 \\
9 & -1
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right] \\
& =\operatorname{det}\left[\left(\begin{array}{cc}
-1-\lambda & 1 \\
9 & -1-\lambda
\end{array}\right)\right] \\
& =(-1-\lambda)(-1-\lambda)-9=(1+\lambda)(1+\lambda)-9=1+2 \lambda+\lambda^{2}-9=\lambda^{2}+2 \lambda-8
\end{aligned}
$$

Solving the quadratic equation by putting it to zero gives

$$
\begin{aligned}
& \lambda^{2}+2 \lambda-8=0 \\
& (\lambda+4)(\lambda-2)=0 \text { which gives } \lambda=-4, \lambda=2
\end{aligned}
$$

The values of λ for a non trivial solution are $\lambda=-4, \lambda=2$.
(b) Similar to (a):

$$
\mathbf{A}-\lambda \mathbf{I}=\left(\begin{array}{cc}
1 & 3 \\
-6 & 5
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
1-\lambda & 3 \\
-6 & 5-\lambda
\end{array}\right)
$$

For a non trivial solution we need the determinant of this to be zero.

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 3 \\
-6 & 5-\lambda
\end{array}\right)=(1-\lambda)(5-\lambda)+18=5-\lambda-5 \lambda+\lambda^{2}+18=\lambda^{2}-6 \lambda+23
$$

Putting the quadratic to zero and solving for λ.

$$
\lambda^{2}-6 \lambda+23=0
$$

Using the quadratic formula, (1.16), with $a=1, b=-6$ and $c=23$ gives

$$
\lambda=\frac{6 \pm \sqrt{(-6)^{2}-(4 \times 1 \times 23)}}{2}=\frac{6 \pm \sqrt{-56}}{2}=\frac{6 \pm \sqrt{-4 \times 14}}{2}=3 \pm j \sqrt{14}
$$

The values of λ are $3+j \sqrt{14}, 3-j \sqrt{14}$.

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

