Complete solutions to Exercise 12(a)

1. We have

$$\theta \xrightarrow{12kN} 5kN$$

By Pythagoras

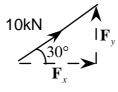
$$|R| = \sqrt{12^2 + 5^2} = 13 \text{ kN}$$

The angle θ is given by

$$\theta = \tan^{-1}\left(\frac{5}{12}\right) = 22.62^{\circ}$$

R is the force of magnitude 13kN and at an angle of 22.62° below the horizontal.

2. Let \mathbf{F}_x and \mathbf{F}_y be the horizontal and vertical components of \mathbf{F} .



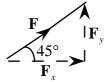
By (4.5)

 $\mathbf{F}_x = 10\cos(30^\circ) = 8.66 \, kN$ horizontal

By (4.4)

$$\mathbf{F}_{v} = 10 \sin(30^{\circ}) = 5kN$$
 vertical

3. Let \mathbf{F}_x and \mathbf{F}_y be the horizontal and vertical components of \mathbf{F} .



Remember 12000 = 12kN. Applying (4.5) and (4.4) gives $|\mathbf{F}_x| = 12\cos(45^\circ) = 8.49kN$

$$|\mathbf{F}_{v}| = 12 \sin(45^{\circ}) = 8.49 kN$$

The force **F** has the components 8.49kN horizontally and 8.49kN vertically.

4. The angle θ is given by

 $\theta = \tan^{-1}(7/3) = 66.80^{\circ}$

Since $|\mathbf{F}| = 10 kN$ we have

$$|\mathbf{F}_{x}| = 10\cos(66.80^{\circ}) = 3.94kN$$

 $|\mathbf{F}_{y}| = 10\sin(66.80^{\circ}) = 9.19kN$

3.94 kN horizontally and 9.19 kN vertically.

(4.4)	$o = h\sin(\theta)$
(4.5)	$a = h\cos(\theta)$

Solutions 12(a)

5. We have

$$\vec{AM} = \vec{AO} + \vec{OM} = -\vec{OA} + \vec{OM} = -\mathbf{a} + \frac{1}{2}\mathbf{b} = \frac{1}{2}\mathbf{b} - \mathbf{a}$$

6. We have

$$\vec{MN} = \vec{MC} + \vec{CN} \qquad (\dagger)$$

Since M is the midpoint of AC

$$\vec{MC} = \frac{1}{2}\vec{AC}$$

Similarly $\vec{CN} = \frac{1}{2}\vec{CB}$. Also $\vec{CB} = -\vec{BC}$. So

$$\vec{CN} = -\frac{1}{2}\vec{BC}$$

By observing Fig 26

$$\vec{AC} = \vec{AB} + \vec{BC}$$

which gives

$$\vec{MC} = \frac{1}{2} \left(\vec{AB} + \vec{BC} \right)$$

Substituting $\vec{CN} = -\frac{1}{2} \vec{BC}$ and $\vec{MC} = \frac{1}{2} \left(\vec{AB} + \vec{BC} \right)$ into ^(†) gives
$$\vec{MN} = \frac{1}{2} \left(\vec{AB} + \vec{BC} \right) - \frac{1}{2} \vec{BC}$$
$$= \frac{1}{2} \vec{AB} + \frac{1}{2} \vec{BC} - \frac{1}{2} \vec{BC} = \frac{1}{2} \vec{AB}$$

7. Drawing \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F} in a triangle we have

$$\theta = 180^{\circ} - (60^{\circ} + 90^{\circ}) = 30^{\circ}$$

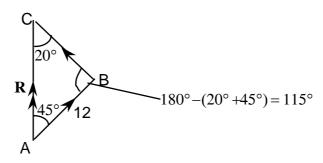
angle $C = 30^{\circ} + 40^{\circ} = 70^{\circ}$

We label *a* and *c* to the sides opposite the angles A and C respectively. To find $|\mathbf{F}|$ we can use the sine rule $\frac{a}{\sin(A)} = \frac{c}{\sin(C)}$ Substituting a = 10, A = 60°, C = 70° into the sine rule gives $\frac{10}{\sin(60^\circ)} = \frac{c}{\sin(70^\circ)}$

$$\frac{10}{\sin(60^{\circ})} = \frac{10}{\sin(70^{\circ})}$$
$$c = \frac{10}{\sin(60^{\circ})} \times \sin(70^{\circ}) = 10.851$$

 \mathbf{F} is 10.85N horizontally.

8. We have

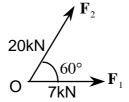


To find the magnitude of **R** we use the sine rule (4.16). Substituting c = 12, angle $C = 20^{\circ}$ and angle B = 115° into (4.16) gives

$$\frac{b}{\sin(115^{\circ})} = \frac{12}{\sin(20^{\circ})}$$
$$b = \frac{12}{\sin(20^{\circ})} \times \sin(115^{\circ}) = 31.80$$

The magnitude of **R** is 31.80kN

9. We can rotate the forces as follows:



By shifting \mathbf{F}_2 to the end of \mathbf{F}_1 we have the resultant force, \mathbf{R} , given by:

$$\begin{array}{c} \mathbf{R} \\ \mathbf{R} \\ \mathbf{20kN} \\ \mathbf{R} \\$$

We can find the magnitude of **R** by using the cosine rule (4.18). We have a = 20, c = 7 and angle B = 120°. Substituting into (4.18) gives

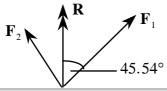
$$b^{2} = 20^{2} + 7^{2} - (2 \times 20 \times 7 \times \cos(120^{\circ})) = 589$$

$$b = \sqrt{589} = 24.27$$

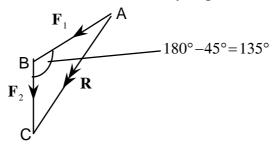
 $|\mathbf{R}| = 24.27kN$. Need to find angle A. We can use the sine rule(4.16). Substituting a = 20, $B = 120^{\circ}$ and b = 24.27 into (4.16) gives

$$\frac{20}{\sin(A)} = \frac{24.27}{\sin(120^{\circ})}$$
$$\sin(A) = \frac{20 \times \sin(120^{\circ})}{24.27} = 0.7137$$
$$A = \sin^{-1}(0.7137) = 45.54^{\circ}$$
$$(4.16)$$
$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$
$$b^{2} = a^{2} + c^{2} - 2ac\cos(B)$$

The resultant force has a magnitude of 24.27*kN* and is at an angle of 45.54° from force \mathbf{F}_1 . Plotting the resultant on the original diagram gives:



10. The resultant force is determined by $\mathbf{F}_1 + \mathbf{F}_2$.



Consider the triangle ABC. We can find ${\bf R}\,$ by using the cosine rule on ABC.

The magnitude of **R** is represented by *b*. Substitute a = 10, c = 15 and $B = 135^{\circ}$ into

$$b^2 = a^2 + c^2 - 2ac\cos(B)$$

gives

$$b^{2} = 10^{2} + 15^{2} - (2 \times 10 \times 15)\cos(135^{\circ}) = 537.132$$

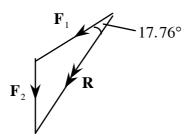
 $b = \sqrt{537.132} = 23.18$

So $|\mathbf{R}| = 23.18 kN$. How can we find angle A? Use sine rule (4.16). Substituting a = 10, b = 23.18 and $B = 135^{\circ}$ gives

$$\frac{10}{\sin(A)} = \frac{23.18}{\sin(135^\circ)}$$
$$\sin(A) = \frac{10}{23.18} \times \sin(135^\circ) = 0.305$$

Hence taking the inverse sin gives

We have



(4.16)	a - b	
	$\frac{1}{\operatorname{cin}(A)} = \frac{1}{\operatorname{cin}(B)}$	
	sin(A) sin(B)	