Complete solutions to Exercise 12(d)

1. Using (12.13) in each case
(a) $(3 \mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(5 \mathbf{i}+\mathbf{j}+7 \mathbf{k})=(3 \times 5)+(1 \times 1)+(1 \times 7)=23$
(b) $(-\mathbf{i}+\mathbf{j}-\mathbf{k}) \cdot(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})=(-1 \times 3)+(1 \times 2)+(-1 \times(-1))=0$
(c) $(10 \mathbf{i}-15 \mathbf{j}+\mathbf{k}) \cdot(-21 \mathbf{i}-\mathbf{k})=(10 \times(-21))+(-15 \times 0)+(1 \times(-1))=-211$
2. Applying (12.15)

$$
w=(100 \mathbf{i}+220 \mathbf{j}-250 \mathbf{k}) \cdot(150 \mathbf{i}+200 \mathbf{j})=(100 \times 150)+(220 \times 200)=59000=59 \mathrm{~kJ}
$$

3. The displacement vector, \mathbf{s}, from $A=\mathbf{i}+\mathbf{j}+\mathbf{k}$ to $B=5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ is given by

$$
\begin{aligned}
\mathbf{s} & =(5 \mathbf{i}-\mathbf{j}+2 \mathbf{k})-(\mathbf{i}+\mathbf{j}+\mathbf{k}) \\
& =(5-1) \mathbf{i}+(-1-1) \mathbf{j}+(2-1) \mathbf{k}=4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

The work done, w, is found by using (12.15):

$$
w=(5 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}) \cdot(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k})=20-6-2=12 \mathrm{~J}
$$

4. We first obtain the unit vector in the direction of $3 \mathbf{i}+\mathbf{j}+\mathbf{k}$. The magnitude of this vector is

$$
|3 \mathbf{i}+\mathbf{j}+\mathbf{k}|=\sqrt{3^{2}+1^{2}+1^{2}}=\sqrt{11}
$$

By (12.4) the unit vector, \mathbf{u}, is

$$
\mathbf{u}=\frac{1}{\sqrt{11}}(3 \mathbf{i}+\mathbf{j}+\mathbf{k})
$$

The force, \mathbf{F}, along this direction is given by

$$
\mathbf{F}=20 \times \frac{1}{\sqrt{11}}(3 \mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{20}{\sqrt{11}}(3 \mathbf{i}+\mathbf{j}+\mathbf{k})
$$

Next we determine $\overrightarrow{A B}$ in (i, \mathbf{j}, \mathbf{k}) components.

We have $A=(3,-1,5)$ and $B=(-1,7,10)$, so

$$
\overrightarrow{O B}=-\mathbf{i}+7 \mathbf{j}+10 \mathbf{k}, \overrightarrow{O A}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}
$$

Substituting these into (*) gives

$$
\overrightarrow{A B}=(-\mathbf{i}+7 \mathbf{j}+10 \mathbf{k})-(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})=-4 \mathbf{i}+8 \mathbf{j}+5 \mathbf{k}
$$

By (12.15) we have
work done $=\frac{20}{\sqrt{11}}(3 \mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(-4 \mathbf{i}+8 \mathbf{j}+5 \mathbf{k})$

$$
=\frac{20}{\sqrt{11}}((3 \times(-4))+(1 \times 8)+(1 \times 5))=6.03 \mathrm{~J}
$$

$$
\begin{equation*}
\mathbf{u}=\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}(a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \tag{12.4}
\end{equation*}
$$

$$
\begin{equation*}
(a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(d \mathbf{i}+e \mathbf{j}+f \mathbf{k})=a d+b e+c f \tag{12.13}
\end{equation*}
$$

Work done $=\mathbf{F} \cdot \mathbf{r}$
5. (i) We have
$\mathbf{r} \cdot \mathbf{r}=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=x^{2}+y^{2}+z^{2}$
(ii) The magnitude of the vector \mathbf{r} is given by

$$
|\mathbf{r}|=|x \mathbf{i}+y \mathbf{j}+z \mathbf{k}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Squaring both sides

$$
|\mathbf{r}|^{2}=|x \mathbf{i}+y \mathbf{j}+z \mathbf{k}|^{2}=x^{2}+y^{2}+z^{2}
$$

Notice that $|\mathbf{r}|^{2}=\mathbf{r} \cdot \mathbf{r}$.
6. We have

$$
\begin{equation*}
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}| \mathbf{a} \mid} \tag{*}
\end{equation*}
$$

Finding the scalar product and magnitude gives

$$
\begin{gathered}
\mathbf{v} \cdot \mathbf{a}=(2 \mathbf{i}+3 \mathbf{j}) \cdot(2 \mathbf{i}+2 \mathbf{j})=4+6=10 \\
|\mathbf{v}|=|2 \mathbf{i}+3 \mathbf{j}|=\sqrt{2^{2}+3^{2}}=\sqrt{13} \\
|\mathbf{a}|=|2 \mathbf{i}+2 \mathbf{j}|=\sqrt{2^{2}+2^{2}}=\sqrt{8}
\end{gathered}
$$

Substituting these into (*)

$$
\cos (\theta)=\frac{10}{\sqrt{13} \sqrt{8}} \text { which gives } \theta=\cos ^{-1}\left(\frac{10}{\sqrt{13} \sqrt{8}}\right)=11.31^{\circ}
$$

7. (i) Differentiating \mathbf{r} with respect to t gives the velocity and acceleration:

$$
\begin{aligned}
& \mathbf{v}=\dot{\mathbf{r}}=\left(3 t^{2}-2 t\right) \mathbf{i}+4 t^{3} \mathbf{j} \\
& \mathbf{a}=\ddot{\mathbf{r}}=(6 t-2) \mathbf{i}+12 t^{2} \mathbf{j}
\end{aligned}
$$

(ii) Substituting $t=1$ into \mathbf{v} and a gives

$$
\begin{gathered}
\mathbf{v}=(3-2) \mathbf{i}+4 \mathbf{j}=\mathbf{i}+4 \mathbf{j} \\
\mathbf{a}=(6-2) \mathbf{i}+12 \mathbf{j}=4 \mathbf{i}+12 \mathbf{j}
\end{gathered}
$$

To find the angle, θ, between the velocity and acceleration we use:

$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}||\mathbf{a}|}
$$

We find $\mathbf{v} \cdot \mathbf{a}$ and $|\mathbf{v} \| \mathbf{a}|$ and then substitute into ${ }^{(\dagger)}$:

$$
\begin{gathered}
\mathbf{v} \cdot \mathbf{a}=(\mathbf{i}+4 \mathbf{j}) \cdot(4 \mathbf{i}+12 \mathbf{j})=(1 \times 4)+(4 \times 12)=52 \\
|\mathbf{v}|=|\mathbf{i}+4 \mathbf{j}|=\sqrt{1^{2}+4^{2}}=\sqrt{17} \\
|\mathbf{a}|=|4 \mathbf{i}+12 \mathbf{j}|=\sqrt{4^{2}+12^{2}}=\sqrt{160}
\end{gathered}
$$

Thus using (\dagger)

$$
\cos (\theta)=\frac{52}{\sqrt{17} \sqrt{160}} \text { which gives } \theta=\cos ^{-1}\left(\frac{52}{\sqrt{17} \sqrt{160}}\right)=4.399^{\circ}
$$

The angle between velocity and acceleration is 4.4°.

