Complete solutions to Exercise 13(a)

Throughout the solutions, C and D represent constant of integration.

1. We have

$$
d p=-\rho g d z
$$

Integrating

$$
\begin{aligned}
& \int d p=\int-\rho g d z \\
& p=-\rho g z+C
\end{aligned}
$$

2. Similar to solution 1 . We have $d p=-\rho \omega^{2} r d r$, integrating this gives

$$
p=-\frac{\rho \omega^{2} r^{2}}{2}+C
$$

3. By substituting $C=5$ we have $\frac{d y}{d x}=5$, rearranging this

$$
d y=5 d x
$$

Integrating gives $y=5 x+D$. Since we want to plot the streamline which goes through the origin we have $x=0, y=0$ which gives $D=0$. Thus we have a straight line $y=5 x$:

4. By rearranging the given differential equation we have

$$
d y=e^{x} d x
$$

Integrating yields $y=e^{x}+C$. We sketch the streamlines for $C=-2,-1,0$ and 1 :

5. We have

$$
d v=a d t
$$

Integrating

$$
\int d v=\int a d t
$$

$$
v=a t+C
$$

Substituting $t=0, v=u$ gives

$$
u=0+C \text { therefore } C=u
$$

Thus $v=u+a t$
6. We have

$$
\begin{aligned}
a=\frac{d v}{d t} & =5-3 t \\
d v & =(5-3 t) d t
\end{aligned}
$$

Integrating both sides

$$
\begin{aligned}
\int d v & =\int(5-3 t) d t \\
v & =5 t-\frac{3 t^{2}}{2}+C
\end{aligned}
$$

Substituting $t=0, v=8$ gives $C=8$

$$
v=5 t-\frac{3 t^{2}}{2}+8
$$

By using hint, $v=\frac{d s}{d t}$, we have $d s=v d t$. Substituting for v gives

$$
d s=\left(5 t-\frac{3 t^{2}}{2}+8\right) d t
$$

Integrating

$$
\begin{gathered}
\int d s=\int\left(5 t-\frac{3 t^{2}}{2}+8\right) d t \\
s=\frac{5 t^{2}}{2}-\frac{t^{3}}{2}+8 t+D
\end{gathered}
$$

Substituting the initial conditions $t=0, s=-2.1$ gives $D=-2.1$. Thus

$$
s=2.5 t^{2}-0.5 t^{3}+8 t-2.1
$$

7. We have $d \omega=\alpha d t$. Integrating this gives

$$
\omega=\alpha t+C
$$

Putting $t=0, \omega=\omega_{0}$

$$
\omega_{0}=0+C \text { which gives } C=\omega_{0}
$$

Thus $\omega=\omega_{0}+\alpha t$. We now have

$$
\frac{d \theta}{d t}=\omega_{0}+\alpha t \text { therefore } d \theta=\left(\omega_{0}+\alpha t\right) d t
$$

Integrating gives

$$
\begin{aligned}
\int d \theta & =\int\left(\omega_{0}+\alpha t\right) d t \\
\theta & =\omega_{0} t+\frac{\alpha t^{2}}{2}+C
\end{aligned}
$$

Substituting $t=0, \theta=0$ gives $C=0$. Hence

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

8. We have $y d y=-x d x$. Integrating

$$
\int y d y=-\int x d x
$$

$$
\frac{y^{2}}{2}=-\frac{x^{2}}{2}+C, \frac{y^{2}}{2}+\frac{x^{2}}{2}=C
$$

Multiplying both sides by 2 :

$$
y^{2}+x^{2}=2 C=A(\text { constant })
$$

The equation $y^{2}+x^{2}=A$ are circles with centre origin and radius, \sqrt{A}.

For $A=1,25$ and 100 we have circles of radius 1,5 and 10 respectively.
9. Separating the variables gives

$$
\frac{d y}{y}=-\frac{d x}{x}
$$

Integrating both sides by using (8.2) we have

$$
\begin{aligned}
& \ln (y)=-\ln (x)+C \\
& \ln (y)+\ln (x)=C
\end{aligned}
$$

By applying (5.11) on the left hand side we have

$$
\ln (x y)=C
$$

Taking exponentials of both sides

$$
x y=e^{C}=A(\text { a constant })
$$

Thus rearranging yields $y=\frac{A}{x}$. Sketching the streamlines for $A=1,5$ and 8

$$
\begin{equation*}
\ln (A)+\ln (B)=\ln (A B) \tag{5.11}
\end{equation*}
$$

$$
\int \frac{d u}{u}=\ln |u|
$$

10. Separating the variables

$$
\frac{d y}{y+1}=\frac{d x}{x+1}
$$

Integrating gives

$$
\begin{aligned}
& \ln (y+1)=\ln (x+1)+C \\
& \ln (y+1)-\ln (x+1)=C
\end{aligned}
$$

Applying (5.12) to the left hand side yields:

$$
\ln \left(\frac{y+1}{x+1}\right)=C
$$

Taking exponentials of both sides

$$
\frac{y+1}{x+1}=e^{C}=A
$$

Rearranging

$$
y+1=A(x+1) \text { which gives } y=A x+A-1
$$

11. We have $d \theta=C d x$. Integrating both sides yields

$$
\theta=C x+D
$$

Substituting $x=0, \theta=\theta_{1}$ gives

$$
\theta_{1}=(C \times 0)+D \text {, hence } D=\theta_{1}
$$

Substituting the other condition, $x=t, \theta=\theta_{2}$ gives

$$
\theta_{2}=C t+D=C t+\theta_{1}
$$

Rearranging gives $C=\frac{\theta_{2}-\theta_{1}}{t}$. Putting this into $\frac{d \theta}{d x}=C$ gives:

$$
\frac{d \theta}{d x}=\frac{\theta_{2}-\theta_{1}}{t}
$$

Substituting this into Fourier's law gives the required result:

$$
Q=-k A\left(\frac{\theta_{2}-\theta_{1}}{t}\right)
$$

12. Separating the variables

$$
\begin{aligned}
& \frac{d p}{p}=-\frac{m g}{R T} d z \\
& \int \frac{d p}{p}=-\int \frac{m g}{R T} d z \\
& \ln (p)=-\frac{m g}{R T} z+C
\end{aligned}
$$

Taking exponentials and using the rules of indices

$$
\begin{gathered}
p=e^{-\frac{m g}{R T} T^{z+C}}=e^{-\frac{m g}{R T}} e^{C}=e^{-\frac{m g}{R T} z} A \text { where } A=e^{C} \\
p=A e^{-\frac{m g}{R T}}
\end{gathered}
$$

$$
\begin{equation*}
\ln (A)-\ln (B)=\ln (A / B) \tag{5.12}
\end{equation*}
$$

13. Separating the variables

$$
\begin{gathered}
\frac{d p}{p^{1 / \gamma}}=-k d z \\
\int p^{-1 / \gamma} d p=-\int k d z \\
\frac{p^{-\frac{1}{\gamma}+1}}{-\frac{1}{\gamma}+1}=-k z+C
\end{gathered}
$$

We can simplify: $-\frac{1}{\gamma}+1=-\frac{1}{\gamma}+\frac{\gamma}{\gamma}=\frac{-1+\gamma}{\gamma}=\frac{\gamma-1}{\gamma}$. Thus we have

$$
\frac{p^{\frac{\gamma-1}{\gamma}}}{\left(\frac{\gamma-1}{\gamma}\right)}=\frac{\gamma p^{\frac{\gamma-1}{\gamma}}}{(\gamma-1)}=-k z+C
$$

Subtracting C and dividing by $-k$ gives $\frac{\gamma^{\frac{\gamma-1}{\gamma}}}{-k(\gamma-1)}-\frac{C}{-k}=z$
Thus $z=\frac{\gamma^{\frac{\gamma-1}{\gamma}}}{k(1-\gamma)}+A$ where $A=\frac{C}{k}$.

