Complete solutions to Exercise 13(b)

1. Putting $P=2$ into (13.4) yields

$$
\begin{gathered}
\text { I.F. }=e^{\int 2 d x}=e^{2 x} \\
y e^{2 x}=\int\left(e^{2 x} e^{-x}\right) d x=\int\left(e^{2 x-x}\right) d x=\int e^{x} d x=e^{x}+C
\end{gathered}
$$

Dividing through by $e^{2 x}$ and using the rules of indices gives

$$
y=\frac{e^{x}}{e^{2 x}}+\frac{C}{e^{2 x}}=e^{x-2 x}+C e^{-2 x}=e^{-x}+C e^{-2 x}
$$

Substituting the initial condition $x=0, y=0$, into $y=e^{-x}+C e^{-2 x}$ yields

$$
0=1+C \text { which gives } C=-1
$$

Thus $y=e^{-x}-e^{-2 x}$
2. Substituting $P=-1$ into (13.4) gives

$$
\begin{aligned}
\text { I.F. } & =e^{\int-1 d x}=e^{-x} \\
y e^{-x}=\int\left(e^{2 x} e^{-x}\right) d x & =\int\left(e^{2 x-x}\right) d x=\int e^{x} d x=e^{x}+C
\end{aligned}
$$

Divide through by e^{-x} into $y e^{-x}=e^{x}+C$ gives

$$
\begin{aligned}
y=\frac{e^{x}}{e^{-x}}+\frac{C}{e^{-x}} & =e^{x-(-x)}+C e^{-(-x)} \\
y & =e^{2 x}+C e^{x}
\end{aligned}
$$

3. Can we use the integrating factor method?

Yes but we need to put the given differential equation into the correct format. Divide through by $1-x^{2}$

$$
\frac{d y}{d x}-\frac{2 x}{1-x^{2}} y=\frac{1}{1-x^{2}}
$$

This time our P for the integrating factor is not a constant but $P=-\frac{2 x}{1-x^{2}}$

$$
\text { I.F. }=\exp \left(\int\left(\frac{-2 x}{1-x^{2}}\right) d x\right)
$$

where \exp is the exponential function. Thus the integration is

$$
\int\left(\frac{-2 x}{1-x^{2}}\right) d x \underset{\text { by }(8.42)}{\overline{=}} \ln \left(1-x^{2}\right) \text { thus } \quad \text { I.F. }=e^{\ln \left(1-x^{2}\right)} \underset{\text { by }}{\overline{=} 5.16)} 1-x^{2}
$$

Substituting this, I.F $=1-x^{2}$, into (13.4) gives

$$
y\left(1-x^{2}\right)=\int\left(1-x^{2}\right) \frac{1}{\left(1-x^{2}\right)} d x=\int d x=x+C
$$

Using the initial condition $x=0, y=0$ gives $C=0$ and we have $y\left(1-x^{2}\right)=x$
Dividing through by $1-x^{2}$ gives $y=\frac{x}{1-x^{2}}$.

$$
\begin{align*}
& e^{\ln (x)}=x \tag{5.16}\\
& \int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)| \tag{8.42}\\
& y(\text { I.F. })=\int(\text { I.F. }) Q(x) d x \tag{13.4}
\end{align*}
$$

4. Dividing the given differential equation by m yields

$$
\frac{d v}{d t}=g-\frac{k}{m} v, \text { rearranging } \frac{d v}{d t}+\frac{k}{m} v=g
$$

We find the integrating factor (I.F.) with $P=\frac{k}{m}$ and integrate this with respect to t :

$$
\begin{gathered}
\text { I.F. }=e^{\int \frac{k}{m} d t}=e^{\frac{k}{m} t} \\
v e^{\frac{k}{m} t}=\int\left(g e^{\frac{k}{m} t}\right) d t \underset{\text { by }(8.41)}{=} \frac{g e^{\frac{k}{m} t}}{k / m}+C=\frac{m g e^{\frac{k}{m} t}}{k}+C
\end{gathered}
$$

Dividing through by $e^{\frac{k}{m} t}$ gives

$$
v=\frac{m g e^{\frac{k}{m} t}}{k e^{\frac{k}{m} t}}+\frac{C}{e^{\frac{k}{m} t}}=\frac{m g}{k}+C e^{-\frac{k}{m} t}
$$

Using the initial condition $t=0, v=0$ gives $0=\frac{m g}{k}+C$ yields $C=-\frac{m g}{k}$
Substituting this, $C=-\frac{m g}{k}$, into v gives the required result: $v=\frac{m g}{k}\left(1-e^{-\frac{k}{m} t}\right)$
5. By rearranging we have $\frac{d v}{d t}+\frac{v}{t}=\frac{1}{t}$

With $P=\frac{1}{t}$ the I.F. $=e^{\int d \mu t}=e^{\ln (t)}=t$. Applying (13.4) with I.F. $=t$

$$
v t=\int t \frac{1}{t} d t=\int d t=t+C
$$

Dividing through by t gives $v=\frac{t}{t}+\frac{C}{t}=1+\frac{C}{t}$. Using the initial condition $t=1, v=0$ gives $C=-1$. Substituting this

$$
\begin{equation*}
v=1+\frac{C}{t}=1-\frac{1}{t} \tag{*}
\end{equation*}
$$

The terminal velocity is the velocity as $t \rightarrow \infty$. As $t \rightarrow \infty$ in (*), v $\rightarrow 1$.

$$
\begin{equation*}
y(\text { I.F. })=\int(\text { I.F. }) Q(x) d x \tag{8.41}
\end{equation*}
$$

6. (i) Dividing the given differential equation through by L :

$$
\begin{equation*}
\frac{d i}{d t}+\frac{R}{L} i=\frac{1}{L} E(t) \tag{*}
\end{equation*}
$$

The integrating factor, I.F. $=e^{\frac{R}{L} t}$. Multiplying (*) by I.F. $=e^{\frac{R}{L} t}$ gives

$$
\begin{array}{r}
e^{\frac{R}{L} t} \frac{d i}{d t}+\frac{R}{L} e^{\frac{R}{L} t} i=\frac{e^{\frac{R}{L} t}}{L} E(t) \\
\frac{d}{d t}\left[e^{\frac{R}{L} t} i\right]=\frac{E(t)}{L} e^{\frac{R}{L} t}
\end{array}
$$

Integrating

$$
i e^{\frac{R}{L} t}=\int\left(\frac{E(t)}{L} e^{\frac{R}{L} t}\right) d t \text {, rearranging gives } i=\frac{e^{-\frac{R}{L} t}}{L} \int\left(E(t) e^{\frac{R}{L} t}\right) d t
$$

(ii) Substituting $E(t)=E$ into result (i) gives

$$
i=\frac{e^{-\frac{R}{L} t}}{L} \int\left(E e^{\frac{R}{L} t}\right) d t=\frac{e^{-\frac{R}{L} t}}{L}\left[\frac{E e^{\frac{R}{L} t}}{(R / L)}+C\right]=\frac{E}{R}+\frac{C e^{-\frac{R}{L} t}}{L}=\frac{E}{R}+A e^{-\frac{R}{L} t}=i
$$

where $A=\frac{C}{L}$ (a constant). Substituting the initial condition $i(0)=i_{0}$ which means $t=0, i=i_{0}$:

$$
i_{0}=\frac{E}{R}+A \text { which gives } A=i_{0}-\frac{E}{R}
$$

Thus we have the required result:

$$
\begin{equation*}
i=\frac{E}{R}+\left(i_{0}-\frac{E}{R}\right) e^{-\frac{R t}{L}} \tag{**}
\end{equation*}
$$

(iii) From the initial condition $i(0)=i_{0}$ we know at $t=0, i=i_{0}$. Also as $t \rightarrow \infty$ in $\left({ }^{* *}\right), i \rightarrow \frac{E}{R}$ because the exponential in (**) goes to zero. Thus

7. Dividing through by $R C$ gives the differential equation

$$
\frac{d v}{d t}+\frac{v}{R C}=\frac{E}{R C}
$$

The I.F. $=e^{I(R C)}$ because $P=1 /(R C)$. Thus

$$
v e^{t /(R C)}=\int\left(e^{t /(R C)} \frac{E}{R C}\right) d t=\frac{E}{R C} \int\left(e^{t /(R C)}\right) d t \underset{\text { by }(8.41)}{=} \frac{E}{R C}\left(\frac{e^{t /(R C)}}{1 /(R C)}\right)+D=E e^{t /(R C)}+D
$$

We can find D by substituting the initial conditions $t=0, v=0$:

$$
0=E e^{0}+D \text { thus } D=-E
$$

We have

$$
\begin{equation*}
\int e^{k x} d x=e^{k x} / k \tag{8.41}
\end{equation*}
$$

$$
v e^{t /(R C)}=E e^{t /(R C)}-E=E\left(e^{t /(R C)}-1\right)
$$

To find v we divide through by $e^{t(R C)}$

$$
\begin{aligned}
v & =\frac{E}{e^{t /(R C)}}\left(e^{t /(R C)}-1\right) \\
& =E\left(\frac{e^{t /(R C)}}{e^{t /(R C)}}-\frac{1}{e^{t /(R C)}}\right) \\
& =E\left(1-e^{-t /(R C)}\right)
\end{aligned}
$$

8. Dividing through by $\left(1 \times 10^{-3}\right)$ gives the differential equation

$$
\frac{d i}{d t}+\left(3 \times 10^{6}\right) i=\left(10 \times 10^{3}\right) e^{t}
$$

The integrating factor is

$$
\text { I.F. }=e^{\int\left(3 \times 10^{6}\right) d t}=e^{\left(3 \times 10^{6}\right) t}
$$

Applying (13.4)

$$
\begin{aligned}
i e^{\left(3 \times 10^{6}\right) t}=\int\left(\left(10 \times 10^{3}\right) e^{\left(3 \times 10^{6}\right) t} e^{t}\right) d t & =\left(10 \times 10^{3}\right) \int\left(e^{\left[\left(3 \times 10^{6}\right)+1\right] t}\right) d t \\
& =\left(10 \times 10^{3}\right) \underbrace{\frac{e^{\left[\left(3 \times 10^{6}\right)+1\right] t}}{\left(3 \times 10^{6}\right)+1}}_{\text {by }(8.41)}+C \\
& =\left(3.33 \times 10^{-3}\right) e^{\left[\left(3 \times 10^{6}\right)+1\right] t}+C
\end{aligned}
$$

To find i on it's own we divide through by $e^{\left(3 \times 10^{6}\right)^{t}}$ and then simplify by using the rules of indices:

$$
\begin{aligned}
i & =\frac{\left(3.33 \times 10^{-3}\right) e^{\left[\left(3 \times 10^{6}\right)+1\right] t}}{e^{\left(3 \times 10^{6}\right) t}}+\frac{C}{e^{\left(3 \times 10^{6}\right) t}} \\
& =\left(3.33 \times 10^{-3}\right) e^{\left[\left(3 \times 10^{6}\right)+1-\left(3 \times 10^{6}\right)\right] t}+C e^{-\left(3 \times 10^{6}\right) t} \\
& =\left(3.33 \times 10^{-3}\right) e^{t}+C e^{-\left(3 \times 10^{6}\right) t}=i
\end{aligned}
$$

Using the initial condition, $t=0, i=0$ gives $C=-3.33 \times 10^{-3}$
Hence using this value for $C=-3.33 \times 10^{-3}$ we have

$$
i=\left(3.33 \times 10^{-3}\right)\left[e^{t}-e^{-\left(3 \times 10^{6}\right) t}\right] \mathrm{A} \quad(\mathrm{~A}=\mathrm{amp})
$$

9. Dividing the original differential equation by R

$$
\frac{d q}{d t}+\frac{q}{R C}=\frac{V}{R} e^{-t}
$$

For the integrating factor we have $P=\frac{1}{R C}$ so, I.F. $=e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}$

$$
\begin{align*}
& \int e^{k x}=e^{k x} / k \tag{8.41}\\
& y(\text { I.F. })=\int(\text { I.F. }) Q(x) d x \tag{13.4}
\end{align*}
$$

Applying (13.4) with this integrating factor

$$
\begin{align*}
q e^{\frac{t}{R C}} & =\int\left(\frac{V}{R} e^{\frac{t}{R C}} e^{-t}\right) d t \\
& =\frac{V}{R} \int\left(e^{\frac{t}{R C}-t}\right) d t \\
& =\frac{V}{R} \int\left(e^{\left(\frac{1}{R C}-1\right) t}\right) d t \underset{\text { by }(\overline{8.41)}}{=} \frac{V}{R} \frac{e^{\left(\frac{1}{R C}-1\right)^{t}}}{\left(\frac{1}{R C}-1\right)}+D
\end{align*}
$$

Simplify the denominator:

$$
\begin{aligned}
R\left(\frac{1}{R C}-1\right) & =R\left(\frac{1}{R C}-\frac{R C}{R C}\right) \\
& =R\left(\frac{1-R C}{R C}\right) \\
& =\frac{1-R C}{C}
\end{aligned}
$$

Dividing through by $e^{\frac{t}{R C}}$ and replacing the denominator in (\dagger) :

$$
\begin{aligned}
q & =\frac{V e^{\left(\frac{1}{R C}-1-\frac{1}{R C}\right) t}}{(1-R C) / C}+D e^{-\frac{t}{R C}} \\
& =\frac{V C e^{-t}}{1-R C}+D e^{-\frac{t}{R C}}
\end{aligned}
$$

Using $t=0, q=0$ gives $D=-\frac{V C}{1-R C}$. Thus $q=\frac{V C}{1-R C}\left(e^{-t}-e^{-t /(R C)}\right)$

$$
y(\text { I.F. })=\int(\text { I.F. }) Q(x) d x
$$

