Complete solutions to Exercise 13(d)

1. Very similar to EXAMPLE 13.
(i) We have $A_{0}=\pi \times 0.1^{2}$. Cross-section area of tank $A=2^{2}=4$. Applying (13.10)

$$
\frac{d h}{d t}=-\frac{\pi \times 0.1^{2}}{4} \sqrt{2 g h}=-\left(34.79 \times 10^{-3}\right) h^{1 / 2}
$$

(ii) Separating variables

$$
\frac{d h}{h^{1 / 2}}=-\left(34.79 \times 10^{-3}\right) d t
$$

Integrating gives

$$
2 h^{1 / 2}=-\left(34.79 \times 10^{-3}\right) t+C
$$

Substituting $t=0, h=1.3$ gives $2 \times 1.3^{1 / 2}=C$. Thus

$$
h^{1 / 2}=\frac{-\left(34.79 \times 10^{-3}\right) t+2(1.3)^{1 / 2}}{2}=-\left(17.395 \times 10^{-3}\right) t+1.14
$$

Squaring both sides

$$
h=\left[-\left(17.395 \times 10^{-3}\right) t+1.14\right]^{2}
$$

(iii) Need to find t for $h=0$.

$$
\begin{aligned}
& 0=-\left(17.395 \times 10^{-3}\right) t+1.14 \\
& t=\frac{1.14}{17.395 \times 10^{-3}}=65.5
\end{aligned}
$$

In minutes, $t=\frac{65.5}{60}=1.09 \mathrm{mins}$.
(iv) The MAPLE commands are given in section D. The graph has the same shape as Fig 21 and note the height, h, decreases with time, t, and $h=0$ when $t \geq 65.5$.

2. (i) The area of the square outlet is $A_{0}=0.05^{2}$. Cross-sectional area of tank is $A=0.75^{2} \pi$. By (13.10)

$$
\frac{d h}{d t}=-\frac{0.05^{2}}{0.75^{2} \pi} \sqrt{2 \times 9.81 \times h}=-\left(6.266 \times 10^{-3}\right) h^{1 / 2}
$$

(ii) Separating variables

$$
\begin{aligned}
& \frac{d h}{h^{1 / 2}}=-\left(6.266 \times 10^{-3}\right) d t \\
& h^{-1 / 2} d h=-\left(6.266 \times 10^{-3}\right) d t
\end{aligned}
$$

Integrating

$$
2 h^{1 / 2}=-\left(6.266 \times 10^{-3}\right) t+C
$$

Substituting $t=0, h=1.6$

$$
2 \times 1.6^{1 / 2}=0+C \text { which gives } C=2.53
$$

Substituting for C into ${ }^{(\dagger)}$ and dividing both sides by 2

$$
h^{1 / 2}=\frac{-\left(6.266 \times 10^{-3}\right) t+2.53}{2}=-\left(3.133 \times 10^{-3}\right) t+1.265
$$

Squaring both sides

$$
h=\left[-\left(3.133 \times 10^{-3}\right) t+1.265\right]^{2}
$$

(iii) The tank is empty when $h=0$. Hence

$$
h=\left[-\left(3.133 \times 10^{-3}\right) t+1.265\right]^{2}=0 \text { gives } t=\frac{1.265}{3.133 \times 10^{-3}}=403.8
$$

The time taken in minutes to empty the tank is $t=\frac{403.8}{60}=6.73 \mathrm{mins}$.
(iv) The graph is the same shape as 1 (iv) but cuts the axis at 1.6 and the t axis at 403.8. When $t \geq 403.8$ the tank is empty, $h=0$.

(13.10)

$$
\frac{d h}{d t}=-\frac{A_{0}}{A} \sqrt{2 g h}
$$

3. (i) We have to use similarity of triangles to obtain a relationship between height, h, and x as shown.

Triangles ABC and ADE are similar so using hint we have

$$
\frac{x}{h}=\frac{1.5}{3.75}=0.4 \text { transposing gives } \quad x=0.4 h
$$

The cross-sectional area, A, is a circle with radius $x=0.4 h$

$$
A=\pi(0.4 h)^{2}=0.16 \pi h^{2}
$$

Outlet area, A_{0}, is a circle

$$
A_{0}=\pi\left(\frac{0.05}{2}\right)^{2}=\left(6.25 \times 10^{-4}\right) \pi
$$

Substituting these into (13.10) and using $g=9.81$ we have

$$
\frac{d h}{d t}=-\frac{\left(6.25 \times 10^{-4}\right) \pi}{0.16 \pi h^{2}} \sqrt{2 g h}=-\frac{\left(6.25 \times 10^{-4}\right)}{0.16} \sqrt{2 g} \frac{\sqrt{h}}{h^{2}}=-\left(17.3 \times 10^{-3}\right) h^{-3 / 2}
$$

(ii) Separating variables

$$
\begin{aligned}
& h^{3 / 2} d h=-\left(17.3 \times 10^{-3}\right) d t \\
& \frac{2 h^{5 / 2}}{5}=-\left(17.3 \times 10^{-3}\right) t+C
\end{aligned}
$$

Substituting the initial condition $t=0, h=3$ gives $C=\left(2 \times 3^{5 / 2}\right) / 5=6.235$

$$
\frac{2 h^{5 / 2}}{5}=-\left(17.3 \times 10^{-3}\right) t+6.235
$$

Transposing to make h the subject gives

$$
\begin{gathered}
h^{5 / 2}=\frac{5}{2}\left[-\left(17.3 \times 10^{-3}\right) t+6.235\right]=-\left(43.25 \times 10^{-3}\right) t+15.59 \\
h=\left[-\left(43.25 \times 10^{-3}\right) t+15.59\right]^{2 / 5}
\end{gathered}
$$

(iii) We need to find t for $h=0$

$$
0=-\left(17.3 \times 10^{-3}\right) t+6.235 \text { transposing } t=\frac{6.235}{17.3 \times 10^{-3}}=360
$$

In minutes $t=6 \mathrm{mins}$. Takes 6 mins to empty the tank which is 3 m full. (iv) By using a graphical calculator or a symbolic manipulator we have

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{A_{0}}{A} \sqrt{2 g h} \tag{13.10}
\end{equation*}
$$

The graph indicates that the height of water in the tank decreases slowly at the start and decreases more rapidly towards the end as you would expect from a conical tank.
(v) Impossible because the tank only has a height of 3.75 m .
4. We have

$$
\frac{d h}{d t}=-k \sqrt{2 g h}=-k \sqrt{2 g} \sqrt{h}
$$

Separating variables

$$
\begin{aligned}
\frac{d h}{h^{1 / 2}} & =-(k \sqrt{2 g}) d t \\
\int h^{-1 / 2} d h & =-\int(k \sqrt{2 g}) d t \\
2 h^{1 / 2} & =-(k \sqrt{2 g}) t+C
\end{aligned}
$$

Substituting the initial condition $t=0, h=1$ gives $C=2$. Thus we have

$$
h^{1 / 2}=-\frac{1}{2}(k \sqrt{2 g}) t+\frac{2}{2}=-\left(k \sqrt{\frac{2 g}{4}}\right) t+1
$$

Squaring both sides

$$
h=\left[-\left(k \sqrt{\frac{g}{2}}\right) t+1\right]^{2}
$$

The graph of height, h, against time, t, for $k=0.1,0.01$ and 0.001 is

The graphs show that the height, h, of water in the tank decreases more rapidly for large k.
5. Similar to EXAMPLE 14. Substituting $T=300$ into (13.11) we have

$$
\frac{d \theta}{d t}=k(\theta-300)
$$

Separating variables

$$
\frac{d \theta}{\theta-300}=k d t
$$

Integrating both sides $\int \frac{d \theta}{\theta-300}=\int k d t$ gives

$$
\ln (\theta-300)=k t+C
$$

Substituting $t=0, \theta=373$ into ${ }^{(\dagger)}$

$$
\ln (373-300)=C \text { gives } C=\ln (73)
$$

Putting this into $\left.{ }^{(} \dagger\right)$

$$
\begin{align*}
& \ln (\theta-300)=k t+\ln (73) \\
& k t=\ln (\theta-300)-\ln (73)=\ln \left(\frac{\theta-300}{73}\right)
\end{align*}
$$

When $t=5 \times 60=300, \theta=330$, substituting these into $(\dagger \dagger)$

$$
\begin{aligned}
300 k & =\ln \left(\frac{330-300}{73}\right) \\
k & =\frac{\ln (30 / 73)}{300}=-2.96 \times 10^{-3}
\end{aligned}
$$

Putting $k=-2.96 \times 10^{-3}$ into $\left({ }^{(\dagger} \dagger\right)$ gives

$$
\ln \left(\frac{\theta-300}{73}\right)=-\left(2.96 \times 10^{-3}\right) t
$$

Taking exponentials

$$
\frac{\theta-300}{73}=e^{-\left(2.96 \times 10^{-3}\right) t} \text { rearranging } \theta=300+73 e^{-\left(2.96 \times 10^{-3}\right) t}
$$

For graph: At $t=0, \theta=300+73 e^{0}=373$ and as $t \rightarrow \infty, \theta \rightarrow 300$

6. From (13.11) we have $\frac{d \theta}{d t}=k(\theta-300)$
because the surrounding temperature is $300 K$. Separating variables

$$
\frac{d \theta}{\theta-300}=k d t \text { and integrating } \ln (\theta-300)=k t+C
$$

Using $t=0, \theta=400$ gives $C=\ln (100)$. We have

$$
\ln (\theta-300)-\ln (100)=k t \text { which gives } \ln \left(\frac{\theta-300}{100}\right)=k t
$$

(13.11)

$$
\frac{d \theta}{d t}=k(\theta-T)
$$

Taking exponentials and rearranging gives $\theta=300+100 e^{k t}$. We cannot find the value of k in this case because we do not have enough information.
7. Separating variables $\frac{d \theta}{\theta-T}=k d t$. Integrating both sides

$$
\begin{equation*}
\int \frac{d \theta}{\theta-T}=\int k d t \text { gives } \ln (\theta-T)=k t+C \tag{}
\end{equation*}
$$

Substituting the initial condition $t=0, \theta=T_{0}$ gives

$$
\ln \left(T_{0}-T\right)=C
$$

We have

$$
\begin{aligned}
& \ln (\theta-T)=k t+\ln \left(T_{0}-T\right) \\
& \ln (\theta-T)-\ln \left(T_{0}-T\right)=k t
\end{aligned}
$$

By using the properties of logs

$$
\ln \left(\frac{\theta-T}{T_{0}-T}\right)=k t
$$

Taking exponentials of both sides

$$
\frac{\theta-T}{T_{0}-T}=e^{k t} \text {, rearranging } \theta-T=\left(T_{0}-T\right) e^{k t}
$$

Thus $\theta=T+\left(T_{0}-T\right) e^{k t}$
8. Using the result of question $7, \theta=T+\left(T_{0}-T\right) e^{k t}$, with $T_{0}=348, T=320$ we have $\theta=320+28 e^{k t}$. Plotting graphs for $k=-0.001,-0.01$ and -0.1 gives

The graph shows the larger the absolute value of k the more rapidly the temperature drops to the surrounding temperature of 320 K .
9. Separating variables $\frac{d \theta}{\theta^{4}-T^{4}}=k d t$. To find θ we have to integrate the left hand side by using partial fractions.

$$
\begin{aligned}
\theta^{4}-T^{4} & =\left(\theta^{2}-T^{2}\right)\left(\theta^{2}+T^{2}\right) \\
& =(\theta-T)(\theta+T)\left(\theta^{2}+T^{2}\right)
\end{aligned}
$$

We have

$$
\begin{equation*}
\frac{1}{\theta^{4}-T^{4}}=\frac{1}{(\theta-T)(\theta+T)\left(\theta^{2}+T^{2}\right)}=\frac{A}{\theta-T}+\frac{B}{\theta+T}+\frac{C \theta+D}{\theta^{2}+T^{2}} \tag{*}
\end{equation*}
$$

Thus

$$
\begin{equation*}
1=A(\theta+T)\left(\theta^{2}+T^{2}\right)+B(\theta-T)\left(\theta^{2}+T^{2}\right)+(C \theta+D)(\theta-T)(\theta+T) \tag{**}
\end{equation*}
$$

Substituting $\theta=-T$ into $\left(^{* *}\right)$ gives

$$
\begin{aligned}
1 & =0+B(-T-T)\left((-T)^{2}+T^{2}\right)+0 \\
& =B(-2 T)\left(2 T^{2}\right) \text { which gives } B=-\frac{1}{4 T^{3}}
\end{aligned}
$$

How can we find A ?
Substitute $\theta=T$ into (**)

$$
\begin{aligned}
& 1=A(T+T)\left(T^{2}+T^{2}\right)+0+0 \\
& 1=4 T^{3} A \text { which gives } A=\frac{1}{4 T^{3}}
\end{aligned}
$$

To find C we equate coefficients of θ^{3} in (**):

$$
\begin{aligned}
& 0=A+B+C \\
& 0=\frac{1}{4 T^{3}}-\frac{1}{4 T^{3}}+C \text { gives } C=0
\end{aligned}
$$

To find D we equate coefficients of θ^{2} in (**):

$$
\begin{aligned}
0 & =A T-B T+D \\
& =\frac{T}{4 T^{3}}+\frac{T}{4 T^{3}}+D=\frac{1}{4 T^{2}}+\frac{1}{4 T^{2}}+D=\frac{1}{2 T^{2}}+D \text { thus } D=-\frac{1}{2 T^{2}}
\end{aligned}
$$

Substituting $A=\frac{1}{4 T^{3}}, B=-\frac{1}{4 T^{3}}, C=0$ and $D=-\frac{1}{2 T^{2}}$ into (*)

$$
\begin{aligned}
\frac{1}{\theta^{4}-T^{4}} & =\frac{1}{4 T^{3}(\theta-T)}-\frac{1}{4 T^{3}(\theta+T)}-\frac{1}{2 T^{2}\left(\theta^{2}+T^{2}\right)} \\
& =\frac{1}{4 T^{3}}\left[\frac{1}{\theta-T}-\frac{1}{\theta+T}-\frac{2 T}{\theta^{2}+T^{2}}\right] \\
\int \frac{d \theta}{\theta^{4}-T^{4}} & =\frac{1}{4 T^{3}}\left[\int \frac{d \theta}{\theta-T}-\int \frac{d \theta}{\theta+T}-2 T \int \frac{d \theta}{\theta^{2}+T^{2}}\right] \\
& =\frac{1}{4 T^{3}}[\ln (\theta-T)-\ln (\theta+T)-2 T \underbrace{\frac{1}{T} \tan ^{-1}\left(\frac{\theta}{T}\right)}_{\text {by }(8.26)}] \\
& =\frac{1}{4 T^{3}}\left[\ln \left(\frac{\theta-T}{\theta+T}\right)-2 \tan ^{-1}\left(\frac{\theta}{T}\right)\right]
\end{aligned}
$$

The constant of integration is added at the end on the right hand side. We have $\int \frac{d \theta}{\theta^{4}-T^{4}}=\int k d t=k t+C$, thus the required result

$$
\frac{1}{4 T^{3}}\left[\ln \left(\frac{\theta-T}{\theta+T}\right)-2 \tan ^{-1}\left(\frac{\theta}{T}\right)\right]=k t+C
$$

$$
\begin{equation*}
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) \tag{8.26}
\end{equation*}
$$

