Complete solutions to Exercise 14(b)

1. Very similar to **EXAMPLE 4**. We have same characteristic equation: $i = Ae^{-5t} + Be^{-2t}$

By using the given initial conditions we obtain the 2 simultaneous equations

$$A+B=0$$

-5A - 2B = 6Solving these gives A = -2 and B = 2. Hence the solution is $i = 2(e^{-2t} - e^{-5t})$

2. Use (14.8) with the appropriate value of k(a) $x = A\cos(3t) + B\sin(3t)$ [Because k = 3] (b) $x = A\cos(4t) + B\sin(4t)$ [Because k = 4] (c) $x = A\cos\left(\sqrt{2t}\right) + B\sin\left(\sqrt{2t}\right)$ Because $k = \sqrt{2}$ Because $k = \sqrt{5}$ (d) $x = A\cos\left(\sqrt{5}t\right) + B\sin\left(\sqrt{5}t\right)$

3. Characteristic equation is $r^2 + k/m = 0$, (using the characteristic equation variable r because m represents mass in this problem).

$$r^2 + \left(\sqrt{\frac{k}{m}}\right)^2 = 0$$

By (14.8), $x = A\cos(\omega t) + B\sin(\omega t)$ where $\omega = \sqrt{k/m}$ 4. Characteristic equation is

ł

$$m^{2} + (4 \times 10^{-6}) = 0$$

 $m^{2} + (2 \times 10^{-3})^{2} = 0$

By (14.8)

$$v = A\cos\left[\left(2\times10^{-3}\right)t\right] + B\sin\left[\left(2\times10^{-3}\right)t\right]$$
(†)

Substituting t = 0, v = 1 into (†)

[Remember $\cos(0) = 1$ and $\sin(0) = 0$] $1 = A\cos(0) + B\sin(0)$ gives A = 1Differentiating (†) and substituting the second condition t=0, $\frac{dv}{dt} = 2 \times 10^{-3}$;

$$\frac{dv}{dt} = -(2 \times 10^{-3}) A \sin\left[(2 \times 10^{-3})t\right] + (2 \times 10^{-3}) B \cos\left[(2 \times 10^{-3})t\right]$$
$$(2 \times 10^{-3}) = 0 + (2 \times 10^{-3}) B \text{ gives } B = 1$$
Substituting $A = 1$ and $B = 1$ into (†) gives
$$v = \cos\left[(2 \times 10^{-3})t\right] + \sin\left[(2 \times 10^{-3})t\right]$$

Using (4.76) with a = 1 and b = 1 gives $v = \sqrt{2} \cos \left| (2 \times 10^{-3}) t - \frac{\pi}{4} \right|$

 $a\cos(\theta) + b\sin(\theta) = \sqrt{a^2 + b^2}\cos(\theta - \alpha)$ where $\alpha = \tan^{-1}(b/a)$ (4.76)

If $r^2 + k^2 = 0$ then $y = A\cos(kx) + B\sin(kx)$ (14.8)

Solutions 14(b)

5. By EXAMPLE 6

$$y = A\cos(kx) + B\sin(kx) \qquad (*)$$

where $k = \sqrt{P/EI}$. Substituting the boundary condition x = L/2, y = e gives

$$e = A\cos\left(\frac{kL}{2}\right) + B\sin\left(\frac{kL}{2}\right) \tag{(†)}$$

Substituting x = -L/2, y = e into (*) gives

$$e = A\cos\left(-\frac{kL}{2}\right) + B\sin\left(-\frac{kL}{2}\right)$$
$$= A\cos\left(\frac{kL}{2}\right) - B\sin\left(\frac{kL}{2}\right)$$
$$\underbrace{+}_{\text{by (4.51)}} \underbrace{+}_{\text{by (4.50)}} (\ddagger \ddagger)$$

Adding (††) and (†) yields

$$2e = 2A\cos\left(\frac{kL}{2}\right)$$
$$A = \frac{e}{\cos\left(\frac{kL}{2}\right)} \underset{\text{by (4.11)}}{=} e \sec\left(\frac{kL}{2}\right)$$

Substituting $A = \frac{e}{\cos\left(\frac{kL}{2}\right)}$ into (†) gives $e = \frac{e}{\cos\left(\frac{kL}{2}\right)} \cos\left(\frac{kL}{2}\right) + B\sin\left(\frac{kL}{2}\right)$ $e = e + B\sin\left(\frac{kL}{2}\right)$, hence B = 0Substituting $A = e\sec\left(\frac{kL}{2}\right)$ and B = 0 into (*) yields $y = e\sec\left(\frac{kL}{2}\right)\cos(kx)$

6. Characteristic equation is $r^2 + 2\omega\zeta r + \omega^2 = 0$ (using *r*, since *m* represents mass). This is a quadratic equation with variable *r*. Putting a = 1, $b = 2\omega\zeta$ and $c = \omega^2$ into (1.16) gives

(1.16)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(4.11)
$$\frac{1}{\cos(x)} = \sec(x)$$

- $\sin(-x) = -\sin(x)$
- $(4.51) \qquad \qquad \cos(-x) = \cos(x)$

$$r = \frac{-2\omega\zeta \pm \sqrt{4\omega^2\zeta^2 - 4\omega^2}}{2} = \frac{-2\omega\zeta \pm \sqrt{4\omega^2(\zeta^2 - 1)}}{2}$$
$$= \frac{-2\omega\zeta \pm 2\omega\sqrt{\zeta^2 - 1}}{2}$$
$$= -\omega\zeta \pm 2\omega\sqrt{\zeta^2 - 1} \quad \text{[Cancelling 2's]}$$
$$r = \omega\left(-\zeta \pm \sqrt{\zeta^2 - 1}\right) \quad \text{[Taking Out }\omega\text{]}$$
$$r_1 = \omega\left(-\zeta \pm \sqrt{\zeta^2 - 1}\right) \quad \text{and} \quad r_2 = \omega\left(-\zeta - \sqrt{\zeta^2 - 1}\right) = -\omega\left(\zeta \pm \sqrt{\zeta^2 - 1}\right)$$

Since we have real and different roots we use (14.4)

- $x = Ae^{r_1 t} + Be^{r_2 t}$ where r_1 and r_2 are as above.
- 7. The characteristic equation is same as solution 6: $m^2 + 2\omega\zeta m + \omega^2 = 0$

By solution to question 6

$$m = \omega \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right)$$

For $\zeta = 1$, $m = -\omega$ (equal roots) so by (14.5) $x = (A + Bt) e^{-\omega t}$

Substituting the first initial condition, when t = 0, x = 5; $5 = e^0 (A + B.0)$ gives A = 5[Remember $e^0 = 1$]

Differentiating $x = (A + Bt)e^{-\omega t}$ by using the product rule, (6.31), yields $\dot{x} = -\omega e^{-\omega t} \left(A + Bt \right) + e^{-\omega t} . B$

Substituting the other initial condition when t = 0, $\dot{X} = 0$;

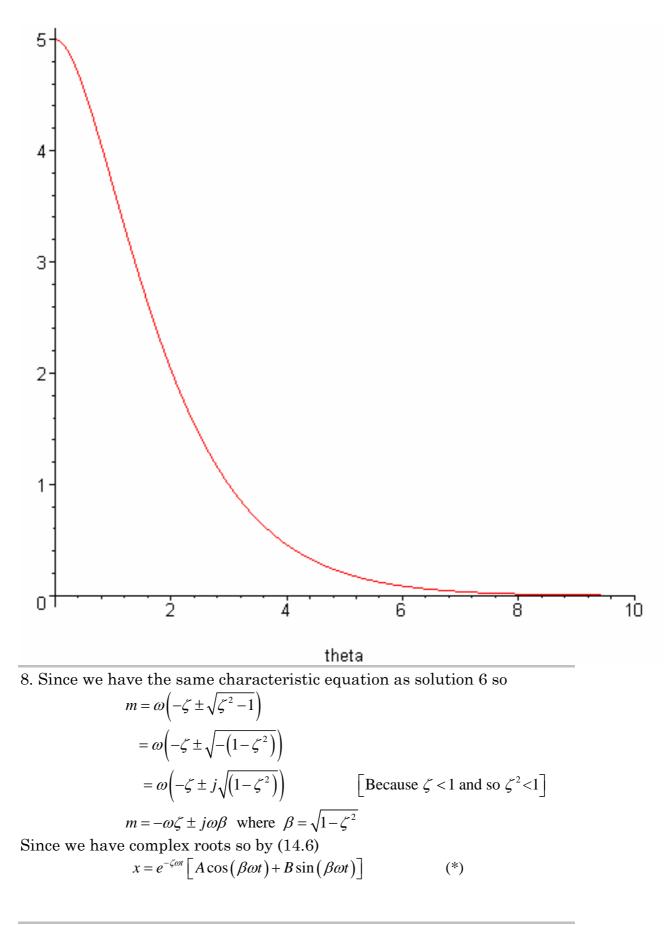
$$0 = -\omega e^{0} (A + B.0) + e^{0}.B$$

$$B = \omega A = 5\omega \qquad [Because \ A = 5]$$
Substituting $A = 5$ and $B = 5\omega$ into $x = (A + Bt)e^{-\omega t}$ gives
$$x = e^{-\omega t} (5 + 5\omega t)$$

$$x = 5e^{-\omega t} (1 + \omega t) \qquad {Taking Out 5]}$$
The following is the MAPLE output with $\theta = \omega t$

> $x := 5 * \exp(-\text{theta}) * (1 + \text{theta});$ $x := 5 e^{(-\theta)} (1 + \theta)$

> plot(x,theta=0..10);



(14.6) If $m = \alpha \pm j\beta$ then $y = e^{\alpha x} [A\cos(\beta x) + B\sin(\beta x)]$

Substituting the initial condition, when t = 0, x = 0;

 $0 = e^{0} \Big[A\cos(0) + B\sin(0) \Big], \text{ gives } A = 0 \text{ (because } e^{0} = 1, \cos(0) = 1 \text{ and } \sin(0) = 0 \Big)$ Substituting A = 0 into (*) gives

$$x = Be^{-\zeta \omega t} \sin(\beta \omega t)$$

Substituting the other initial condition, when t = 0, $\dot{x} = \omega\beta$ means we need to differentiate $x = Be^{-\zeta\omega t} \sin(\beta\omega t)$.

$$\dot{x} = -\zeta \omega B e^{-\zeta \omega t} \sin(\beta \omega t) + B \beta \omega e^{-\zeta \omega t} \cos(\beta \omega t)$$

Substituting t = 0 and $\dot{x} = \omega\beta$ into this $\omega\beta = 0 + B\omega\beta$ which gives B = 1Substituting A = 0, B = 1 into (*) gives $x = e^{-\zeta\omega t} \sin(\beta\omega t)$ where $\beta = \sqrt{1 - \zeta^2}$

9. Dividing the characteristic equation by C gives $m^2 + \frac{1}{RC}m + \frac{1}{LC} = 0$

Substituting
$$a = 1$$
, $b = \frac{1}{RC}$ and $c = \frac{1}{LC}$ into (1.16) gives

$$m = \frac{-\frac{1}{RC} \pm \sqrt{\frac{1}{R^2C^2} - \frac{4}{LC}}}{2} = -\frac{1}{2RC} \pm \frac{1}{2}\sqrt{\frac{L - 4R^2C}{R^2C^2L}}$$

$$= -\frac{1}{2RC} \pm \frac{1}{2}\sqrt{\frac{1}{R^2C^2}}\sqrt{\frac{L - 4R^2C}{L}}$$

$$= -\frac{1}{2RC} \pm \frac{1}{2RC}\sqrt{\frac{L - 4R^2C}{L}}$$

$$m = \frac{1}{2RC} \left[-1 \pm \sqrt{\frac{L - 4R^2C}{L}} \right] \qquad (*)$$

Case (a) $L = 4CR^2$;

Substituting $L = 4CR^2$ into (*) gives $m = -\frac{1}{2RC}$ [Equal Roots] By (14.5)

$$\mathbf{v} = (\mathbf{A} + \mathbf{B}\mathbf{t})\mathbf{e}^{-t/2\mathbf{R}\mathbf{C}}$$

Case (b) $L > 4CR^2$; Using (*) gives two roots m_1 and m_2 [Distinct Roots]

$$m_{1} = \frac{1}{2RC} \left[-1 + \sqrt{\frac{L - 4R^{2}C}{L}} \right], \quad m_{2} = \frac{1}{2RC} \left[-1 - \sqrt{\frac{L - 4R^{2}C}{L}} \right]$$

By (14.4) $v = Ae^{m_1 t} + Be^{m_2 t}$ Case (c) $L < 4CR^2$;

$$(1.16) mtextbf{m} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(14.4) If m₁ and m₂ then
$$v = Ae^{m_1 x} + Be^{m_2 x}$$

(14.5) Equal roots m then $y = (A + Bx)e^{mx}$

Solutions 14(b)

$$m = -\frac{1}{2RC} \pm \frac{1}{2RC} \sqrt{\frac{L - 4R^2C}{L}} = -\frac{1}{2RC} \pm \frac{1}{2RC} \sqrt{-\left(\frac{4R^2C - L}{L}\right)}$$
$$m = -\frac{1}{2RC} \pm j\frac{1}{2RC} \sqrt{\left(\frac{4R^2C - L}{L}\right)}$$
[Complex Roots]
$$\text{Let } \alpha = -\frac{1}{2RC} \text{ and } \beta = \frac{1}{2RC} \sqrt{\left(\frac{4R^2C - L}{L}\right)}, \text{ then substituting these into (14.6)}$$
gives

g

$$v = e^{\alpha t} \left[A \cos(\beta t) + B \sin(\beta t) \right]$$

10. Same differential equation as question 9. The characteristic equation is given by

$$Cm^2 + \frac{1}{R}m + \frac{1}{L} = 0$$

The roots of this equation are given by solution 9

$$m = \frac{1}{2RC} \left[-1 \pm \sqrt{\frac{L - 4R^2C}{L}} \right] \tag{*}$$

Substituting $R = 10 \times 10^3$ and $C = 1 \times 10^{-9}$ gives Г

$$m = \frac{1}{2 \times (10 \times 10^{3}) \times (1 \times 10^{-9})} \left[-1 \pm \sqrt{\frac{L - \left[4 \times (10 \times 10^{3})^{2} \times 1 \times 10^{-9} \right]}{L}} \right]$$
$$= 50 \times 10^{3} \left[-1 \pm \sqrt{\frac{L - 0.4}{L}} \right]$$
$$m = -(50 \times 10^{3}) \pm (50 \times 10^{3}) \sqrt{\frac{L - 0.4}{L}}$$
Since $L < 0.4$, $m = -(50 \times 10^{3}) \pm j(50 \times 10^{3}) \sqrt{\frac{0.4 - L}{L}}$.

Equating the imaginary part of this to the imaginary part of the roots given in the question $-(50 \times 10^3) \pm j(30 \times 10^3)$ gives

$$j(50 \times 10^3) \sqrt{\frac{0.4 - L}{L}} = j(30 \times 10^3)$$

 $\sqrt{\frac{0.4 - L}{L}} = 0.6$ [Dividing by 50×10³]

Squaring both sides

$$\frac{0.4 - L}{L} = 0.36$$

0.4 - L = 0.36L

Solving this equation gives L = 0.294 (correct to three d.p.) Hence L = 0.294 H.

6

11. Dividing through by C we have

 $\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{v}{LC} = 0$ $m^2 + \frac{1}{RC}m + \frac{1}{LC} = 0$ Equating with $m^2 + 2\zeta\omega m + \omega^2 = 0$ $\omega^2 = \frac{1}{LC} \text{ gives } \omega = \frac{1}{\sqrt{LC}}$ Equating the *m* terms gives $2\zeta\omega = \frac{1}{RC}$ and substituting $\omega = \frac{1}{\sqrt{LC}}$ we have $\frac{2\zeta}{\sqrt{LC}} = \frac{1}{RC}$ $\zeta = \frac{\sqrt{LC}}{2RC} = \frac{1}{2R}\sqrt{\frac{L}{C}}$