Complete solutions to Exercise 14(c)

1. (a) Since f(x)=18 is a constant so Y=C, differentiating this gives zero. Substituting for Y into

$$\frac{d^2Y}{dx^2} - \frac{dY}{dx} - 2Y = 18$$

gives

$$0 - 0 - 2C = 18$$
, hence $C = -9$

The particular integral Y = -9. (This particular integral can be seen clearly without going through all the mechanism above. Only the last term on the left hand side -2y plays a part. Since you need 18, Y = -9).

(b) Since f(x) = 2x + 3 is a linear function so

$$Y = ax + b$$

$$\frac{dY}{dx} = a, \quad \frac{d^2Y}{dx^2} = 0$$

Substituting these into the given differential equation

$$\frac{d^2Y}{dx^2} - \frac{dY}{dx} - 2Y = 2x + 3$$

gives

$$0-a-2(ax+b) = 2x+3$$
$$-2ax-(a+2b) = 2x+3$$

Equating coefficients of

x: -2a = 2 hence a = -1constants: -(a+2b) = 3 -(-1+2b) = 3-2b = 2 hence b = -1

Substituting a = -1 and b = -1 into Y = ax + b gives

$$Y = -x - 1$$

(c) Since $f(x) = 130\sin(3x)$ our trial function is (see (14.16))

$$Y = a\cos(3x) + b\sin(3x)$$

$$\frac{dY}{dx} = \underbrace{-3a\sin(3x)}_{\text{by (6.13)}} + \underbrace{3b\cos(3x)}_{\text{by (6.12)}}$$

$$\frac{d^2Y}{dx^2} = \underbrace{-9a\cos(3x)}_{\text{by (6.12)}} - \underbrace{9b\sin(3x)}_{\text{by (6.13)}}$$

Substituting into

$$\frac{d^2Y}{dx^2} - \frac{dY}{dx} - 2Y = 130\sin(3x)$$

gives

$$-9a\cos(3x) - 9b\sin(3x) - \left[-3a\sin(3x) + 3b\cos(3x)\right] - 2\left[a\cos(3x) + b\sin(3x)\right] = 130\sin(3x)$$

(6.12)
$$\left[\sin\left(kx\right)\right]' = k\cos\left(kx\right)$$

$$(6.13) \qquad \left[\cos(kx)\right]' = -k\sin(kx)$$

$$(-9a-3b-2a)\cos(3x)+(3a-9b-2b)\sin(3x)=130\sin(3x)$$
$$(-11a-3b)\cos(3x)+(3a-11b)\sin(3x)=130\sin(3x)$$

Equating coefficients of

$$cos(3x)$$
: $-11a-3b=0$
 $sin(3x)$: $3a-11b=130$

Solving these simultaneous equations gives a = 3 and b = -11. Putting a = 3 and b = -11 into our trial function $Y = a\cos(3x) + b\sin(3x)$ gives the particular integral $Y = 3\cos(3x) - 11\sin(3x)$

(d) Since $f(x) = \cos(x)$ our trial function is given by

$$Y = a\cos(x) + b\sin(x)$$

$$\frac{dY}{dx} = -a\sin(x) + b\cos(x)$$

$$\frac{d^2Y}{dx^2} = -a\cos(x) - b\sin(x)$$
(†)

Substituting into

$$\frac{d^2Y}{dx^2} - \frac{dY}{dx} - 2Y = \cos(x)$$

gives

$$-a\cos(x)-b\sin(x)-\left[-a\sin(x)+b\cos(x)\right]-2\left[a\cos(x)+b\sin(x)\right]=\cos(x)$$
$$(-a-b-2a)\cos(x)+(-b+a-2b)\sin(x)=\cos(x)$$
$$(-3a-b)\cos(x)+(a-3b)\sin(x)=\cos(x)$$

Equating coefficients of

$$\cos(x): \qquad -3a-b=1$$

$$\sin(x): \qquad a-3b=0, \quad a=3b$$

Solving these simultaneous equations gives a = -3/10, b = -1/10. Substituting these into (†)

$$Y = -\frac{3}{10}\cos(x) - \frac{1}{10}\sin(x) = -\frac{1}{10}[3\cos(x) + \sin(x)]$$

- (e) Straightforward, $y = e^{3x}/4$
- 2. The first two, (a) and (b), are uncomplicated.

(a)
$$y = Ae^{-2x} + Be^{-x} + 3$$

(b)
$$y = Ae^{-x/3} + Be^x - 2x + 7$$

(c) First we find the complementary function y_c , (right hand side is equal to zero). The characteristic equation is

$$m^2 + 2m + 1 = 0$$

 $(m+1)^2 = 0, m = -1 \text{ (equal roots)}$

By (14.5) $y_c = (A + Bx)e^{-x}$. Since $f(x) = 36e^{5x}$ so by (14.17), $Y = Ce^{5x}$ Differentiating gives

(14.5) Equal roots,
$$m$$
, gives $y = (A + Bx)e^{mx}$

(14.7) If
$$f(x) = Ae^{kx}$$
 then $y = Ce^{kx}$

$$\frac{dY}{dx} = 5Ce^{5x}$$
$$\frac{d^2Y}{dx^2} = 25Ce^{5x}$$

Substituting into
$$\frac{d^2Y}{dx^2} + 2\frac{dY}{dx} + Y = 36e^{5x}$$
 gives $25Ce^{5x} + 2(5Ce^{5x}) + Ce^{5x} = 36e^{5x}$ $36Ce^{5x} = 36e^{5x}$ which gives $C = 1$

Substituting C=1 into $Y=Ce^{5x}$ gives the particular integral $Y=e^{5x}$ Adding the complementary function, y_c , and the particular integral gives the general solution

$$y = (A + Bx)e^{-x} + e^{5x}$$

(d) Same procedure as part (a). The characteristic equation is

$$m^{2} + 3m - 4 = 0$$

 $(m+4)(m-1) = 0$
 $m_{1} = -4, m_{2} = 1$

Since we have 2 distinct roots so

$$y_c = Ae^{-4x} + Be^x$$

Particular integral Y:

Since $f(x) = -34\sin(x)$ we try the function

$$Y = a\cos(x) + b\sin(x)$$
$$\frac{dY}{dx} = -a\sin(x) + b\cos(x)$$
$$\frac{d^2Y}{dx^2} = -a\cos(x) - b\sin(x)$$

Substituting into $\frac{d^2Y}{dx^2} + 3\frac{dY}{dx} - 4Y = -34\sin(x)$ gives

$$[-a\cos(x)-b\sin(x)]+3[-a\sin(x)+b\cos(x)]-4[a\cos(x)+b\sin(x)] = -34\sin(x)$$

$$(-a+3b-4a)\cos(x)+(-b-3a-4b)\sin(x) = -34\sin(x)$$

$$(3b-5a)\cos(x)+(-5b-3a)\sin(x) = -34\sin(x)$$

Equating coefficients of

$$cos(x)$$
: $3b-5a = 0$
 $sin(x)$: $-5b-3a = -34$

Solving these simultaneous equations gives a = 3, b = 5. Substituting for a and b into our trial function, $Y = a\cos(x) + b\sin(x)$, gives

$$Y = 3\cos(x) + 5\sin(x)$$

and the general solution, $y = y_c + Y$, is

$$y = Ae^{-4x} + Be^{x} + 3\cos(x) + 5\sin(x)$$

3. By adding kx to both sides, the given differential equation becomes $m\ddot{x} + kx = mg$

Dividing through by m gives

$$\ddot{x} + \frac{k}{m}x = g \tag{*}$$

Complementary function x_i :

$$\ddot{x}_c + \frac{k}{m}x_c = 0$$

The characteristic equation

$$r^2 + \frac{k}{m} = 0$$
$$r^2 + \left(\sqrt{\frac{k}{m}}\right)^2 = 0$$

By (14.8) $x_c = A\cos(\omega t) + B\sin(\omega t)$ where $\omega = \sqrt{\frac{k}{m}}$

Particular integral X: Since

$$\ddot{x} + \frac{k}{m}x = g$$

and g is a constant so X=C, $\dot{X}=\ddot{X}=0$. Substituting these into (*)

$$\frac{k}{m}C = g$$
 which gives $C = \frac{mg}{k}$

Hence $X = \frac{mg}{k}$. The general solution is $x = x_c + X$ so we have

$$x = A\cos(\omega t) + B\sin(\omega t) + \frac{mg}{k}$$
 where $\omega = \sqrt{\frac{k}{m}}$

4. We have

$$(1 \times 10^{3}) \frac{d^{2}x}{dt^{2}} = (0.5 + 4x) \times 10^{3}$$

$$\frac{d^{2}x}{dt^{2}} = (0.5 + 4x) \qquad \left[\text{dividing by } 10^{3}\right]$$

$$\frac{d^{2}x}{dt^{2}} - 4x = 0.5 \qquad (*)$$

Characteristic equation is $r^2 - 4 = 0$, solving gives $r_1 = 2$ and $r_2 = -2$. By (14.4) $x_c = Ae^{2t} + Be^{-2t}$

Since f(x) = 0.5 our trial function is a constant, X = C. Substituting into (*) gives

$$-4C = 0.5$$
 gives $C = -0.125$

The general solution is found by adding together the complementary function, $x_c = Ae^{2t} + Be^{-2t}$, and the particular integral, X = -0.125:

(14.4)
$$x = Ae^{2t} + Be^{-2t} - 0.125$$
(14.4) If r_1 and r_2 then $y = Ae^{r_1x} + Be^{r_2x}$
(14.8)
$$r^2 + k^2 = 0 \text{ gives } y = A\cos(kx) + B\sin(kx)$$

5. By adding kx to both sides, the differential equation becomes

$$m\ddot{x} + kx = F\sin(\alpha t)$$

Complementary function x_c :

$$m\ddot{x}_c + kx_c = 0$$
, $\ddot{x}_c + \frac{k}{m}x_c = 0$

Thus the characteristic equation is

$$r^2 + \left(\sqrt{\frac{k}{m}}\right)^2 = 0$$

By (14.8)
$$x_c = A\cos(\omega t) + B\sin(\omega t)$$
 where $\omega = \sqrt{\frac{k}{m}}$

Particular integral X:

By (14.16)

$$X = a\cos(\alpha t) + b\sin(\alpha t)$$

Differentiating gives

$$\dot{X} = \alpha \Big[-a \sin(\alpha t) + b \cos(\alpha t) \Big]
\ddot{X} = \alpha^2 \Big[-a \cos(\alpha t) - b \sin(\alpha t) \Big] = -\alpha^2 \Big[a \cos(\alpha t) + b \sin(\alpha t) \Big]$$

Substituting into

$$\ddot{X} + \frac{k}{m}X = \frac{F}{m}\sin(\alpha t)$$

gives

$$-\alpha^{2} \left[a \cos(\alpha t) + b \sin(\alpha t) \right] + \frac{k}{m} \left[a \cos(\alpha t) + b \sin(\alpha t) \right] = \frac{F}{m} \sin(\alpha t)$$
$$\left(\frac{k}{m} - \alpha^{2} \right) a \cos(\alpha t) + \left(\frac{k}{m} - \alpha^{2} \right) b \sin(\alpha t) = \frac{F}{m} \sin(\alpha t)$$

Equating coefficients of

$$\cos(\alpha t): \qquad \left(\frac{k}{m} - \alpha^2\right) a = 0, \text{ gives } a = 0 \text{ because } \alpha^2 \neq \frac{k}{m}$$

$$\sin(\alpha t): \qquad \left(\frac{k}{m} - \alpha^2\right) b = \frac{F}{m}$$

$$b = \frac{F}{m} \left(\frac{k - m\alpha^2}{m}\right) = \frac{F}{k - m\alpha^2}$$

Substituting a = 0 and $b = \frac{F}{k - m\alpha^2}$ into $X = a\cos(\alpha t) + b\sin(\alpha t)$ gives

$$X = \frac{F}{k - m\alpha^2} \sin(\alpha t)$$

The general solution, x = x + X, is

$$x = A\cos(\omega t) + B\sin(\omega t) + \frac{F}{k - m\alpha^2}\sin(\alpha t)$$
 where $\omega = \sqrt{\frac{k}{m}}$

6. Very similar to solution 5.

7. Rearranging the equation to

$$m\ddot{x} + c\dot{x} + kx = mg + kL \tag{*}$$

Two parts, first find the complementary function;

$$m\ddot{x}_c + c\dot{x}_c + kx_c = 0$$

Dividing by m

$$\ddot{x}_c + \frac{c}{m}\dot{x}_c + \frac{k}{m}x_c = 0$$

The characteristic equation is

$$r^2 + \frac{c}{m}r + \frac{k}{m} = 0$$

Using the quadratic equation formula, (1.16), gives

$$r = \frac{-c/m \pm \sqrt{c^2/m^2 - 4k/m}}{2}$$

$$= -\frac{c}{2m} \pm \frac{1}{2} \sqrt{\frac{c^2 - 4km}{m^2}}$$

$$= -\frac{c}{2m} \pm \frac{1}{2m} \sqrt{c^2 - 4km}$$

$$= \frac{1}{2m} \left[-c \pm \sqrt{c^2 - 4km} \right]$$

$$= \frac{1}{2m} \left[-c \pm \sqrt{-(4km - c^2)} \right]$$

$$r = \frac{1}{2m} \left[-c \pm \int_{\text{because c}^2 < 4km}^{-c^2} \sqrt{4km - c^2} \right] = -\frac{c}{2m} \pm j \frac{1}{2m} \sqrt{4km - c^2}$$

Using (14.6) with $\alpha = -\frac{c}{2m}$ and $\beta = \frac{1}{2m} \sqrt{4km - c^2}$ gives

$$x_{c} = e^{-\frac{c}{2m}t} \left[A\cos(\beta t) + B\sin(\beta t) \right]$$

where x_c represents the complementary function. We need to find the particular integral; Since the right hand side of (*) is a constant, mg + kL, so by (14. 11)

$$X = C$$
, $\dot{X} = 0$ and $\ddot{X} = 0$

Substituting into mX + cX + kX = mg + kL gives

$$kC = mg + kL$$

$$C = \frac{mg}{k} + L$$

(1.16)
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(14.6) If
$$m = \alpha \pm j\beta$$
 then $x = e^{\alpha t} \left[A \cos(\beta t) + B \sin(\beta t) \right]$

(14.11) If
$$f(x) = \text{constant then } Y = C$$

Hence the particular integral is $X = \frac{mg}{l} + L$.

The general solution, $x = x_c + X$, is

$$x = e^{-\frac{c}{2m}t} \left[A\cos(\beta t) + B\sin(\beta t) \right] + \frac{mg}{k} + L$$

where
$$\beta = \frac{1}{2m} \sqrt{4km - c^2}$$
.

8. Dividing the given differential equation by CL we have

$$\frac{d^2i}{dt^2} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I}{LC} \tag{*}$$

Putting $R = 1 \times 10^3$, $C = 10 \times 10^{-9}$ and $L = 50 \times 10^{-3}$

$$\frac{1}{RC} = \frac{1}{1 \times 10^{3} \times 10 \times 10^{-9}} = 1 \times 10^{5}$$

$$\frac{1}{LC} = \frac{1}{50 \times 10^{-3} \times 10 \times 10^{-9}} = 2 \times 10^{9}$$
Substituting these and $I = 50 \times 10^{-3}$ into (*) gives

$$\frac{d^2i}{dt^2} + (1 \times 10^5) \frac{di}{dt} + (2 \times 10^9) i = (2 \times 10^9) (50 \times 10^{-3})$$
 (**)

Complementary function i:

The characteristic equation is

$$m^2 + (1 \times 10^5) m + (2 \times 10^9) = 0$$

Putting a = 1, $b = 1 \times 10^5$ and $c = 2 \times 10^9$ into (1.16) gives

$$m = \frac{-(1 \times 10^5) \pm \sqrt{(1 \times 10^5)^2 - (4 \times 2 \times 10^9)}}{2}$$
$$= -(5 \times 10^4) \pm (2.236 \times 10^4)$$
$$m_1 = -2.764 \times 10^4 \text{ and } m_2 = -7.236 \times 10^4$$

By (14.4)

$$i_c = Ae^{-(2.764 \times 10^4)t} + Be^{-(7.236 \times 10^4)t}$$

Particular integral I:

Since the right hand side of (**) is $(2 \times 10^9)(50 \times 10^{-3})$, a constant, so our trial function.

$$I = K$$
 (K is constant)

Substituting into $\frac{d^2I}{dt^2} + (1\times10^5)\frac{dI}{dt} + (2\times10^9)I = (2\times10^9)(50\times10^{-3})$ gives $0+0+(2\times10^9)K = (2\times10^9)(50\times10^{-3})$

$$K = 50 \times 10^{-3}$$

$$I = 50 \times 10^{-3}$$

(1.16)
$$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(14.4) If
$$m_1$$
 and m_2 then $y = Ae^{m_1t} + Be^{m_2t}$

We know $i = i_c + I$

$$i = Ae^{-(2.764 \times 10^4)t} + Be^{-(7.236 \times 10^4)t} + (50 \times 10^{-3})$$

9. By looking at **EXAMPLE 7** of this chapter, we know the complementary function $y_c = Ae^{2x} + Be^{-x}$. (Same characteristic equation). The trial function is $Y = Cxe^{-x}$ because Ce^{-x} is already part of the complementary function.

$$Y = Cxe^{-x} \tag{\dagger}$$

Differentiating by using the product rule (6.31) gives

$$\frac{dY}{dx} = Ce^{-x} - Cxe^{-x}$$

$$\frac{d^2Y}{dx^2} = -Ce^{-x} - \left(Ce^{-x} - Cxe^{-x}\right) = -2Ce^{-x} + Cxe^{-x}$$

Substituting into

$$\frac{d^2Y}{dx^2} - \frac{dY}{dx} - 2Y = 5e^{-x}$$

gives

$$-2Ce^{-x} + Cxe^{-x} - Ce^{-x} + Cxe^{-x} - 2Cxe^{-x} = 5e^{-x}$$
$$(-2C + Cx - C + Cx - 2Cx)e^{-x} = 5e^{-x}$$
$$-3C = 5 \text{ gives } C = -5/3$$

Hence
$$Y = -\frac{5}{3}xe^{-x}$$
 (putting $C = -\frac{5}{3}$ into (†)

The general solution is given by $y=y_c+Y$, so we have

$$y = Ae^{2x} + Be^{-x} - \frac{5}{3}xe^{-x}$$

10.(a) Characteristic equation is

$$m^{2} + 4m + 3 = 0$$

 $(m+3)(m+1) = 0$
 $m_{1} = -3, m_{2} = -1$

Since we have two distinct roots so $y_c = Ae^{-3x} + Be^{-x}$

Hence the trial function is $Y = Cxe^{-3x}$

(b) Characteristic equation is

$$m^2 + 9 = 0$$
$$m^2 + 3^2 = 0$$

By (14.8), $y_c = A\cos(3x) + B\sin(3x)$. The trial function could be

$$a\cos(3x)+b\sin(3x)$$

Since $a\cos(3x)$ is already part of the complementary function, so we try

$$Y = x \left[a \cos(3x) + b \sin(3x) \right]$$

(6.31)
$$(uv)' = u'v + v'u$$
(14.8)
$$m^2 + k^2 = 0 \text{ then } y = A\cos(kx) + B\sin(kx)$$

11. The differential equation can be rearranged to

$$\frac{d^2y}{dx^2} + \frac{P}{EI}y = -\frac{Pm}{EI}\sin\left(\frac{\pi x}{L}\right) \tag{*}$$

Complementary function y_c ; As before

$$y_c = A\cos(kx) + B\sin(kx)$$
 where $k = \sqrt{\frac{P}{EI}}$

Particular integral *Y*; Since the right hand side of (*) is $-\frac{Pm}{EI}\sin\left(\frac{\pi x}{L}\right)$ so by

(14.16) our trial function is

$$Y = C\cos\left(\frac{\pi x}{L}\right) + D\sin\left(\frac{\pi x}{L}\right) \tag{**}$$

$$\frac{dY}{dx} = \frac{\pi}{L} \left[-C\sin\left(\frac{\pi x}{L}\right) + D\cos\left(\frac{\pi x}{L}\right) \right]$$

$$\frac{d^2Y}{dx^2} = -\frac{\pi^2}{L^2} \left[C\cos\left(\frac{\pi x}{L}\right) + D\sin\left(\frac{\pi x}{L}\right) \right]$$

Substituting into $\frac{d^2Y}{dx^2} + \frac{P}{EI}Y = -\frac{Pm}{EI}\sin\left(\frac{\pi x}{L}\right)$ gives

$$-\frac{\pi^{2}}{L^{2}} \left[C \cos \left(\frac{\pi x}{L} \right) + D \sin \left(\frac{\pi x}{L} \right) \right] + \frac{P}{EI} \left[C \cos \left(\frac{\pi x}{L} \right) + D \sin \left(\frac{\pi x}{L} \right) \right]$$
$$= -\frac{Pm}{EI} \sin \left(\frac{\pi x}{L} \right)$$

Equating coefficients of $\cos\left(\frac{\pi x}{L}\right)$;

$$C\left[\frac{P}{EI} - \frac{\pi^2}{L^2}\right] = 0 \text{ gives } C = 0$$

Equating coefficients of $\sin\left(\frac{\pi x}{L}\right)$;

$$D\left(\frac{P}{EI} - \frac{\pi^2}{L^2}\right) = -\frac{Pm}{EI}$$

$$D\left(\frac{PL^2 - \pi^2 EI}{(EI)L^2}\right) = -\frac{Pm}{EI}$$

Multiply through by EI gives

$$\frac{D(PL^2 - \pi^2 EI)}{L^2} = -Pm$$

$$D = \frac{PL^2 m}{FI\pi^2 - PI^2}$$

Substituting C = 0 and $D = \frac{PL^2m}{EI\pi^2 - PL^2}$ into (**) gives

$$Y = \frac{PL^2m}{EI\pi^2 - PL^2}\sin\left(\frac{\pi x}{L}\right)$$

The general solution, y, is given by

$$y = A\cos(kx) + B\sin(kx) + \frac{PL^2m}{EI\pi^2 - PL^2}\sin\left(\frac{\pi x}{L}\right)$$