Complete solutions to Exercise 15(b)

1. We have $I=\frac{1}{12} b d^{3}$ where I is a function of b and d.

$$
\frac{\partial I}{\partial b}=\frac{1}{12} d^{3} \quad \text { and } \quad \frac{\partial I}{\partial d}=\frac{3}{12} b d^{2}
$$

We need to find ΔI. By (15.8)

$$
\begin{aligned}
\Delta I & \approx \frac{\partial I}{\partial b} \Delta b+\frac{\partial I}{\partial d} \Delta d \\
& =\frac{1}{12}\left[d^{3} \Delta b+3 b d^{2} \Delta d\right]
\end{aligned}
$$

We are given $b=5, d=0.8, \Delta b=0.05$ and $\Delta d=0.008$. Substituting these gives

$$
\Delta I \approx \frac{1}{12}\left[\left(0.8^{3} \times 0.05\right)+\left(3 \times 5 \times 0.8^{2} \times 0.008\right)\right]=0.00853
$$

The approximate error in I is $0.00853 \mathrm{~m}^{4}$
2. Given $G=\frac{\mathrm{R}^{4} \theta}{\mathrm{~L}}$ we need to find ΔG. Note that G is a function of R, Q and L. We have

$$
\begin{align*}
\Delta G & \approx\left(\frac{\partial G}{\partial R}\right) \Delta R+\left(\frac{\partial G}{\partial \theta}\right) \Delta \theta+\left(\frac{\partial G}{\partial L}\right) \Delta L \\
& =\left(\frac{4 R^{3} \theta}{L}\right) \Delta R+\left(\frac{R^{4}}{L}\right) \Delta \theta-\left(\frac{R^{4} \theta}{L^{2}}\right) \Delta L \tag{}
\end{align*}
$$

The percentage changes can be represented by

$$
\Delta R=-0.005 R, \quad \Delta \theta=0.02 \theta \text { and } \Delta L=0.015 L
$$

Substituting these into (*) gives

$$
\begin{aligned}
\Delta G & \approx \frac{4 R^{3} \theta}{L}(-0.005 R)+\frac{R^{4}}{L}(0.02 \theta)-\frac{R^{4} \theta}{L^{2}}(0.015 L) \\
& =\frac{R^{4} \theta}{L}[\{4 \times(-0.005)\}+0.02-0.015] \quad \text { (factorizing) } \\
& =G[-0.015]
\end{aligned}
$$

The approximate percentage change in G is a reduction of 1.5%.
3. Q is function of A and h. By (15.8)

$$
\begin{equation*}
\Delta Q \approx \frac{\partial Q}{\partial A} \Delta A+\frac{\partial Q}{\partial h} \Delta h \tag{*}
\end{equation*}
$$

We can rewrite Q as

$$
\begin{gathered}
Q=\underbrace{(0.7 \sqrt{2 g})}_{\text {constant }} A \sqrt{h}=(0.7 \sqrt{2 g}) A h^{1 / 2} \\
\frac{\partial Q}{\partial A}=0.7 \sqrt{2 g} \sqrt{h} \text { and } \frac{\partial Q}{\partial h}=\frac{1}{2}(0.7 \sqrt{2 g}) A h^{-1 / 2}=\frac{(0.7 \sqrt{2 g}) A}{2 \sqrt{h}}
\end{gathered}
$$

$$
\begin{equation*}
\Delta z \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y \tag{15.8}
\end{equation*}
$$

Substituting these into (*) gives

$$
\begin{aligned}
& \Delta Q \approx 0.7 \sqrt{2 g}\left[\sqrt{h} \Delta A+\frac{A}{2 \sqrt{h}} \Delta h\right] \\
&=0.7 \sqrt{2 \times 9.81}\left[\sqrt{1.75}\left(0.2 \times 10^{-3}\right)+\frac{2 \times 10^{-3}}{2 \times \sqrt{1.75}}(-0.25)\right] \\
& \begin{array}{c}
\text { subsititug } \\
\text { the given values }
\end{array} \\
&=2.34 \times 10^{-4}
\end{aligned}
$$

The discharge rate, Q, is increased by approximately $\left(2.34 \times 10^{-4}\right) \mathrm{m}^{3} / \mathrm{s}$.
4. We need to find $\Delta \mathrm{f}$. Also f is a function of L and C. By (15.8)

$$
\begin{equation*}
\Delta f \approx \frac{\partial f}{\partial L} \Delta L+\frac{\partial f}{\partial C} \Delta C \tag{*}
\end{equation*}
$$

The percentage change can be represented by

$$
\Delta L=\frac{-1.5}{100} \times L=-0.015 L, \Delta C=-\frac{0.5}{100} \times C=-0.005 C
$$

Putting these into (*) gives

$$
\begin{gather*}
\Delta f \approx \frac{\partial f}{\partial L}(-0.015 L)+\frac{\partial f}{\partial C}(-0.005 C) \\
f=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi} L^{-1 / 2} C^{-1 / 2} \\
\frac{\partial f}{\partial L}=-\frac{1}{2} \cdot \frac{1}{2 \pi} L^{-3 / 2} C^{-1 / 2}=-\frac{1}{4 \pi L^{3 / 2} C^{1 / 2}}=-\frac{1}{4 \pi L L^{1 / 2} C^{1 / 2}} \\
\frac{\partial f}{\partial L}=-\frac{1}{4 \pi L \sqrt{L C}}
\end{gather*}
$$

Similarly

$$
\frac{\partial f}{\partial C}=-\frac{1}{4 \pi C \sqrt{L C}}
$$

Substituting $\frac{\partial f}{\partial L}=-\frac{1}{4 \pi L \sqrt{L C}}$ and $\frac{\partial f}{\partial C}=-\frac{1}{4 \pi C \sqrt{L C}}$ into (\dagger) gives

$$
\begin{aligned}
\Delta f & \approx-\frac{1}{4 \pi L \sqrt{L C}}(-0.015 L)-\frac{1}{4 \pi \mathbb{C} \sqrt{L C}}(-0.005 \mathbb{C}) \\
& =\frac{1}{2 \pi \sqrt{L C}}\left(\frac{0.015}{2}+\frac{0.005}{2}\right) \\
& =f(0.01) \quad\left(\text { remember } \frac{1}{2 \pi \sqrt{L C}}=f\right) \\
\Delta f & \approx 0.01 f
\end{aligned}
$$

The approximate percentage change in f is 1%.
5. L is a function of C, ρ, V and A that is $L=f(C, \rho, V, A)$. We have

$$
\Delta L \approx \frac{\partial L}{\partial C} \Delta C+\frac{\partial L}{\partial \rho} \Delta \rho+\frac{\partial L}{\partial V} \Delta V+\frac{\partial L}{\partial A} \Delta A
$$

The given percentages can be written as

$$
\Delta C= \pm 0.01 C, \Delta \rho= \pm 0.005 \rho, \quad \Delta V= \pm 0.006 \mathrm{~V} \text { and } \Delta A= \pm 0.001 \mathrm{~A}
$$

Need to find $\frac{\partial L}{\partial C}, \frac{\partial L}{\partial \rho}, \frac{\partial L}{\partial V}$ and $\frac{\partial L}{\partial A}$

$$
\begin{gathered}
L=\frac{C \rho V^{2} A}{2} \\
\frac{\partial L}{\partial C}=\frac{\rho V^{2} A}{2}, \quad \frac{\partial L}{\partial \rho}=\frac{C V^{2} A}{2}, \quad \frac{\partial L}{\partial V}=\frac{2 C \rho V A}{2} \text { and } \frac{\partial L}{\partial A}=\frac{C \rho V^{2}}{2}
\end{gathered}
$$

Substituting all these into (\dagger) and taking the positive change for largest error gives

$$
\begin{aligned}
& \Delta L \approx \frac{\rho V^{2} A}{2}(0.01 C)+\frac{C V^{2} A}{2}(0.005 \rho)+\frac{2 C \rho V A}{2}(0.006 V)+\frac{C \rho V^{2}}{2}(0.001 A) \\
&=\frac{\rho V^{2} A C}{2}(0.01)+\frac{\rho V^{2} A C}{2}(0.005)+\frac{2 \rho V^{2} A C}{2}(0.006)+\frac{\rho V^{2} A C}{2}(0.001) \\
&=\frac{\rho V^{2} A C}{2}[0.01+0.005+(2 \times 0.006)+0.001] \\
& \text { factorizing } \\
&=L(0.028)=0.028 L
\end{aligned}
$$

The largest percentage error in L is 2.8%.
6. By transposing formula we have $\eta=\frac{p \pi d^{4}}{128 Q L}$. Hence η is a function of p, d, Q and L

$$
\Delta \eta \approx \frac{\partial \eta}{\partial p} \Delta p+\frac{\partial \eta}{\partial d} \Delta d+\frac{\partial \eta}{\partial Q} \Delta Q+\frac{\partial \eta}{\partial L} \Delta L
$$

The percentage errors can be written as

$$
\begin{aligned}
& \Delta p= \pm \frac{1.1}{100} p= \pm 0.011 p, \Delta Q= \pm \frac{0.5}{100} Q= \pm 0.005 Q \\
& \Delta L= \pm \frac{0.3}{100} L= \pm 0.003 L \text { and } \Delta d= \pm \frac{0.1}{100} d= \pm 0.001 d
\end{aligned}
$$

Partially differentiating $\eta=\frac{\mathrm{p} \pi \mathrm{d}^{4}}{128 \mathrm{QL}}$ we have

$$
\begin{aligned}
& \frac{\partial \eta}{\partial p}=\frac{\pi d^{4}}{128 Q L} \\
& \frac{\partial \eta}{\partial d}=\frac{4 p \pi d^{3}}{128 Q L} \\
& \frac{\partial \eta}{\partial Q}=-\frac{p \pi d^{4}}{128 Q^{2} L} \\
& \frac{\partial \eta}{\partial L}=-\frac{p \pi d^{4}}{128 Q L^{2}}
\end{aligned}
$$

Substituting all these into $\Delta \eta \approx \frac{\partial \eta}{\partial \rho} \Delta \rho+\frac{\partial \eta}{\partial d} \Delta d+\frac{\partial \eta}{\partial Q} \Delta Q+\frac{\partial \eta}{\partial L} \Delta L$ gives $\Delta \eta \approx \frac{\pi d^{4}}{128 Q L}(\pm 0.011 p)+\frac{4 p \pi d^{3}}{128 Q L}(\pm 0.001 d)-\frac{p \pi d^{4}}{128 Q^{2} L}(\pm 0.005 Q)-\frac{p \pi d^{4}}{128 Q L^{2}}(\pm 0.003 L)$

For maximum error we let the first 2 terms on the right hand side be positive and last 2 terms be negative so that we have

$$
\begin{aligned}
\Delta \eta & \approx \frac{0.011 p \pi d^{4}}{128 Q L}+\frac{0.004 p \pi d^{4}}{128 Q L}+\frac{0.005 p \pi d^{4}}{128 Q L}+\frac{0.003 p \pi d^{4}}{128 Q L} \\
& =\frac{p \pi d^{4}}{128 Q L}[0.011+0.004+0.005+0.003] \\
& =\eta[0.023] \\
\Delta \eta & \approx 0.023 \eta
\end{aligned}
$$

The maximum percentage error is 2.3%.
7. T is a function of P and V. Applying (15.9) to $T=\frac{P V}{R}$ gives

$$
\begin{align*}
& d T=\frac{\partial T}{\partial P} d P+\frac{\partial T}{\partial V} d V \tag{}\\
& \quad \frac{\partial T}{\partial P}=\frac{V}{R} \quad \text { and } \quad \frac{\partial T}{\partial V}=\frac{P}{R}
\end{align*}
$$

Hence (*) becomes

$$
\begin{aligned}
d T & =\frac{V}{R} d P+\frac{P}{R} d V \\
& =\frac{V d P+P d V}{R}
\end{aligned}
$$

