Complete solutions to Exercise 16(c)

1. (a)

$$
P(\text { Not faulty resistor }) \underset{\text { by }(16.8)}{=} 1-P(\text { faulty resistor })=1-0.1=0.9
$$

(b) P (All three components are faulty)

$$
\begin{aligned}
& =P([\text { resistor is faulty }] \text { and [inductor is faulty] and [capacitor is faulty }] \\
& =P(\text { resistor is faulty }) \times P(\text { inductor is faulty }) \times P(\text { capacitor is faulty }) \\
& =\frac{10}{100} \times \frac{5}{100} \times \frac{3}{100}=\frac{3}{20000}
\end{aligned}
$$

2. Let D denote defective

$$
\begin{aligned}
P(\text { All three } D) & =P(D \text { and } D \text { and } D) \\
& =P(D) \times P(D) \times P(D) \\
& =\frac{2}{100} \times \frac{2}{100} \times \frac{2}{100}=8 \times 10^{-6}
\end{aligned}
$$

3. We have

$$
\begin{aligned}
P(\text { Connection between } X \text { and } \mathrm{Y}) & =P(A \text { or } B) \\
& =P(A)+P(B)-P(A) \times P(B) \\
& =0.8+0.65-(0.8 \times 0.65)=0.93
\end{aligned}
$$

4. (i) $P(L \leq 200)=\frac{3000}{10000}=0.3$
(ii) Note that all these events are mutually exclusive.

$$
\begin{aligned}
P(L \leq 500) & =P(0<L \leq 200 \text { or } 200<L \leq 500) \\
& =P(0<L \leq 200)+P(200<L \leq 500) \\
& =0.3+0.35=0.65
\end{aligned}
$$

(iii) $P(L>500) \neq 1-P(L \leq 500)=1-0.65=0.35$
5. Let M and L denote a calculator not having a memory button and log button respectively.
(a) We need to find $P(M$ or $L)$:

$$
\begin{aligned}
P(M \text { or } L) & =P(M)+P(L)-P(M \text { and } L) \\
& =\frac{5}{100}+\frac{3}{100}-\frac{1}{100}=\frac{7}{100}
\end{aligned}
$$

(b) We use De Morgan's law

$$
\begin{aligned}
& P([\text { not } M] \text { and }[\text { not } L]) \underset{\text { by(16.15) }}{=} P[\operatorname{not}(M \text { or } L)] \\
& =1-P(M \text { or } L)=1-\frac{7}{100}=\frac{93}{100}
\end{aligned}
$$

$$
\begin{equation*}
P(\operatorname{not} A)=1-P(A) \tag{16.8}
\end{equation*}
$$

6. Let A and B denote that system A and system B work respectively.

Since the communication network fails if both systems fail we have

$$
\begin{aligned}
P([\text { not } A] \text { and }[\text { not } B]) & =P([\text { not } A]) \times P([\text { not } B]) \\
& =(1-0.88) \times(1-0.93)=8.4 \times 10^{-3}
\end{aligned}
$$

7. Let A denote the first component is good and B denote the second component is defective.

$$
\begin{aligned}
& P(A)=\frac{46}{50} \\
& P(B)=\frac{4}{49}
\end{aligned}
$$

8. (i) Let A, B and C represent parts A, B and C being defective respectively.

$$
\begin{aligned}
P(\text { no defective part })= & P([\text { not } A] \text { and }[\text { not } B] \text { and }[\text { not } C]) \\
& =P(\text { not } A) \times P(\text { not } B) \times P(\text { not } C) \\
& =(1-0.15)(1-0.25)(1-0.02)=0.62475
\end{aligned}
$$

(ii) We have

$$
\begin{array}{r}
P(\text { At least one defective part }) \underset{\text { by (16.17) }}{=1-} 1-P(\text { no defective part }) \\
=1-0.62475=0.37525
\end{array}
$$

9. Let A, B and C denote A, B and C work respectively. Remember
A, B and C are independent events

$$
\begin{gathered}
P(\text { connection })=P([A \text { or } B] \text { and } C)=P(A \text { or } B) \times P(C) \\
P(A \text { or } B)=P(A)+P(B)-P(A) \times P(B) \\
=0.7+0.75-(0.7 \times 0.75)=0.925 \\
P(\text { connection })=0.925 \times 0.85=0.786 \quad \text { (3 d.p. })
\end{gathered}
$$

10. $P($ At least one working $) \underset{\text { by }}{\overline{(16.17)}} \underset{\sim}{L} 1-P($ none working $)$
$P($ none working $)=P\left(\left[\begin{array}{ll}\text { not } & A\end{array}\right]\right.$ and $\left[\begin{array}{ll}\text { not } & B\end{array}\right]$ and $\left.\left[\begin{array}{ll}\text { not } & C\end{array}\right]\right)$

$$
\begin{aligned}
& =P(\text { not } A) \times P(\text { not } B) \times P(\text { not } C) \\
& =(1-0.6)(1-0.75)(1-0.55)=0.045
\end{aligned}
$$

Substituting $P($ none working $)=0.045$ into (*) gives

$$
P(\text { At least one working } \quad)=1-0.045=0.955
$$

11. $P($ second component defective $\quad)=\frac{3}{59}$
12. Let D denote defective
(a) We have

$$
\begin{aligned}
P(\text { Both defective }) & =P(D \text { and } D) \\
& =P(D) \times P(D) \\
& =\frac{5}{100} \times \frac{4}{99}=\frac{1}{495}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(\text { None defective }) & =P([\text { not } D] \text { and }[\text { not } D]) \\
& =P(\text { not } D) \times P(\text { not } D) \\
& =\frac{95}{100} \times \frac{94}{99}=\frac{893}{990}
\end{aligned}
$$

(c)
$P($ Only one is defective $)=P([$ first $D]$ and [second not $D])$ or $P([$ first not $D]$ and [second $D])$

$$
=\left(\frac{5}{100} \times \frac{95}{99}\right)+\left(\frac{95}{100} \times \frac{5}{99}\right)=\frac{19}{198}
$$

13. Very similar to EXAMPLE 16.

$$
\begin{aligned}
P(B)= & \frac{P(A \text { and } B)}{P(A)} \\
& =\frac{0.88}{0.92}=0.957 \text { (3 d.p.) }
\end{aligned}
$$

14. Since choosing a component is an independent event, we have 5% of $120=6$. So 6 components are faulty.

$$
P(\text { first faulty })=\frac{6}{120}, \quad P(\text { second faulty })=\frac{5}{119}
$$

Hence

$$
P(\text { second faulty })=\frac{5}{119}
$$

15. Let A, B and C denote defects of type I, II and III respectively.
(a) What do we need to find?

$$
P(A)=\frac{P(A \text { and } B)}{P(B)}=\frac{3 / 150}{4 / 150}=\frac{3}{4}
$$

(b) We have

$$
P(C)=\frac{P(C \text { and } B)}{P(B)}=\frac{2 / 150}{4 / 150}=\frac{2}{4}=\frac{1}{2}
$$

(c) We have

$$
P(A \text { and } C)=\frac{P(A \text { and } B \text { and } C)}{P(B)}=\frac{1 / 150}{4 / 150}=\frac{1}{4}
$$

16.

$$
P(\text { both defective })=\frac{7}{96} \times \frac{6}{95}=\frac{7}{1520}
$$

17. Let F and S denote the first and second engine fail respectively.
P (at least one engine working) $=1-P$ (no engine working)
Probability of both engines fail is given by

$$
\begin{gather*}
P(F \text { and } S)=P(S) \times P(F) \tag{*}\\
P(F)=1-0.85=0.15
\end{gather*}
$$

Substituting $P(F)=0.15$ and $P(S)=0.15$ into (*) gives

$$
P(F \text { and } S)=0.15 \times 0.15=0.0225
$$

Hence

$$
P(\text { at least one engine working })=1-0.0225=0.9775
$$

18. We have
$P([A$ and $B]$ or $[C$ and $D])=[P(A) \times P(B)]+[P(C) \times P(D)]-[P(A) \times P(B) \times P(C) \times P(D)]$ $=(0.7 \times 0.8)+(0.77 \times 0.95)-(0.7 \times 0.8 \times 0.77 \times 0.95)=0.88186$
