## Complete solutions to Exercise 2(c)

1. We have

2. The graph cuts the $x$ axis where $\mathrm{x}^{2}-9=0$. Solving for $x$ :

$$
\begin{aligned}
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

The graph $v$ cuts the $x$ axis at +3 and -3 . We have:

3. The graphs of $P=\frac{v^{2}}{R}$ are quadratic curves going through the origin.

Substituting the given $R$ values: $P=v^{2}, P=\frac{v^{2}}{5}, P=\frac{v^{2}}{10}$ and $P=\frac{v^{2}}{20}$.

4. The graph $v$ cuts the $x$ axis where $\frac{1}{40}\left(400-x^{2}\right)=0$. Solving:

$$
\begin{aligned}
400-x^{2} & =0 \\
x^{2} & =400 \\
x & = \pm 20
\end{aligned}
$$

The graph $v$ cuts the x axis at -20 and 20. Putting $x=0$ gives

$$
v=\frac{1}{40}(400)=10
$$

We have
ve=
5. When $t=0, v=48$ also the graph cuts the $t$ axis where $v=0$ :

$$
\begin{aligned}
48-3 t^{2} & =0 \\
3 t^{2} & =48 \text { gives } t^{2}=16 \text { and so } t=4
\end{aligned}
$$

Since the velocity is decreasing with time $t$ we have negative acceleration. 6. Between $t=0$ and $t=5$ we have the graph $V=0.1 t^{2}$ which is a quadratic going through the origin.
For $t>5$ the graph follows a horizontal line $V=2.5$ and at $t=5, V=0.1 \times 5^{2}=2.5$, hence:

$$
\underbrace{2.5}_{5} \begin{gathered}
{ }^{V}---\frac{V}{1} \\
V=0.1 t^{2}
\end{gathered} \begin{gathered}
\frac{V=2.5}{1} \\
\frac{2}{2}
\end{gathered} t
$$

7. For $t$ between 0 and 2 we have the quadratic curve $s=t^{2}+1$ which cuts the $s$ axis at 1 . For $2 \leq t<10$ we have the straight line $s=2 t+1$. Thus:

