Complete solutions to Exercise 2(e)

1. '	We es	stablish	a table	of values,	$s = t^3$	$-2t^{2}$	+5:

t	$s = t^3 - 2t^2 + 5$		
0	$0^{3} - (2 \times 0^{2}) + 5 = 5$		
1	$1^{3} - (2 \times 1^{2}) + 5 = 4$		
2	$2^{3} - (2 \times 2^{2}) + 5 = 5$		
3	$3^3 - (2 \times 3^2) + 5 = 14$		

Connecting these points gives the curve:

2. Similarly establishing a table of values for t = 0, 0.5, 1, 1.5 and 2 gives v = 0, -0.375, 0, 1.875 and 6 respectively. Connecting these points gives:

3. By putting R = 0, 1, 2, ..., 9, 10 into $I = \frac{10}{5+R}$ we have:

5 + H					
R	$I = \frac{10}{5+R}$				
0	$I = \frac{10}{(5+0)} = \frac{10}{5} = 2$				
1	$I = \frac{10}{(5+1)} = \frac{10}{6} = 1.67$				
2	10/7 = 1.43				
3	10/8 = 1.25				
4	10/9 = 1.11				
5	10/10 = 1				
6	10/11=0.91				
7	10/12 = 0.83				
8	10/13 = 0.77				
9	10/14 = 0.71				
10	10/15 = 0.67				

12. The graph, $v = \sqrt{25 - x^2}$, crosses the x axis at

At x = 0, $v = \sqrt{25} = 5$. Thus the graph between -5 and 5 for v is given by:

13. (Maple). Write each of the following and then press ENTER after each line:

(a) $\operatorname{plot}((400*R)/(10+R)^2, R = 0..20);$

(b) $\operatorname{plot}((500*R)/(10*(10^3)+R)^2, R = 0..20*(10^3));$

(c) $\operatorname{plot}((2500*R)/(1500+R)^2, R = 0..3000)$,

From the resulting graphs:

For (a) note that maximum P value occurs between 5 and 15, so we plot (a) again for R = 5..15. By using the mouse, we can see that the maximum P occurs when R = 10.

Similarly for (b) plot between $5 * 10^3$ and $15 * 10^3$, the graph shows maximum P occurs at $R = 10 * 10^3$.

For (c), maximum P occurs at R = 1500.

You should notice that if $P = \frac{aR}{(b+R)^2}$ then maximum P occurs when R = b.

14. You can use MAPLE or any other computer algebra package to plot the graphs.

For (a) at $R_L = 10$, V = 30 volt. For (b) at $R_L = 3 \times 10^3$, V = 7.5 volt. For (c) at $R_L = 15 \times 10^3$, V = 5 volt. Notice that $V = \frac{E}{2}$, (half the e.m.f. voltage). If $R_L = R$ then $V = \frac{ER_L}{R + R_L}$ becomes: $V = \frac{ER_L}{R_L + R_L} = \frac{ER_L}{2R_L} = \frac{E}{2}$ (cancelling the R_L 's)