Complete solutions to Exercise 14(a)

1. Integrate each function twice and substitute the given conditions to obtain the following:
(a) $s=-4.9 t^{2}$
(b) $s=1.63 t^{3}$
(c) $s=u t+\frac{1}{2} a t^{2}$
2. (a) Characteristic equation is given by

$$
\begin{gathered}
m^{2}+5 m+6=0 \\
(m+3)(m+2)=0 \\
m_{1}=-3, m_{2}=-2
\end{gathered}
$$

Since we have distinct roots so by (14.4) we have

$$
y=A e^{-3 x}+B e^{-2 x}
$$

(b) Characteristic equation is $m^{2}+4 m+4=0$

$$
(m+2)^{2}=0 \text {, hence } m=-2 \quad \text { [Equal Roots] }
$$

Substituting $m=-2$ into, (14.5), $y=(A+B x) e^{m x}$ gives

$$
y=(A+B x) e^{-2 x}
$$

(c) Characteristic equation is $m^{2}-2 m+4=0$.

Using the quadratic formula (1.16) with $a=1, b=-2$ and $c=4$ gives

$$
\begin{aligned}
m=\frac{2 \pm \sqrt{4-16}}{2} & =1 \pm \frac{1}{2} \sqrt{-12}=1 \pm j \frac{\sqrt{12}}{2} \\
m=1 \pm j \frac{\sqrt{4 \times 3}}{2} & =1 \pm j \frac{\sqrt{4} \times \sqrt{3}}{2}=1 \pm j \frac{2 \sqrt{3}}{2} \\
m & =1 \pm j \sqrt{3}
\end{aligned}
$$

Putting $\alpha=1$ and $\beta=\sqrt{3}$ into (14.6) gives $y=e^{x}[A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x)]$
3. We will just state the characteristic equation and then the solution.
(a) We have

$$
\begin{aligned}
& m^{2}+3 m+2=0 \\
& (m+2)(m+1)=0 \\
& m_{1}=-2, m_{2}=-1 \quad \text { [Distinct Roots] }
\end{aligned}
$$

By (14.4) the general solution is $y=A e^{-2 x}+B e^{-x}$

$$
\begin{equation*}
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

(b) The characteristic equation is given by

$$
\begin{aligned}
m^{2}-7 m+6 & =0 \\
(m-6)(m-1) & =0 \\
m_{1}=6 & m_{2}=1 \quad \text { [Distinct Roots] }
\end{aligned}
$$

By (14.4) the general solution is $y=A e^{6 x}+B e^{x}$
(c) We have

$$
\begin{aligned}
& m^{2}-6 m+9=0 \\
& \quad(m-3)^{2}=0 \text { gives } m_{1}=m_{2}=3 \quad \text { [Equal Roots] } \\
& y=(A+B x) e^{3 x}
\end{aligned}
$$

(d) We have

$$
\begin{aligned}
m^{2}-4 m+5 & =0 \\
m & =\frac{4 \pm \sqrt{16-20}}{2}=2 \pm j \quad \text { [Complex Roots] }
\end{aligned}
$$

Using (14.6) with $\alpha=2$ and $\beta=1$ gives $y=e^{2 x}[A \cos (x)+B \sin (x)]$.
(e) We have

$$
\begin{aligned}
m^{2}-8 m+16 & =0 \\
(m-4)^{2} & =0 \text { gives equal roots } m=4
\end{aligned}
$$

By (14.5) we have the general solution $y=(A+B x) e^{4 x}$
4. (a) Characteristic equation is

$$
\begin{aligned}
m^{2}+6 m+9 & =0 \\
(m+3)^{2} & =0, m=-3
\end{aligned}
$$

Since we have equal roots, $m=-3$, so by (14.5)

$$
y=(A+B x) e^{-3 x}
$$

(b) Characteristic equation is

$$
\begin{aligned}
10 m^{2}+50 m+250 & =0 \\
m^{2}+5 m+25 & =0
\end{aligned}
$$

[Dividing by 10]
Putting $a=1, b=5$ and $c=25$ into (1.16) gives
$m=\frac{-5 \pm \sqrt{25-(4 \times 25)}}{2}=-\frac{5}{2} \pm \frac{\sqrt{25(1-4)}}{2}$

$$
=-\frac{5}{2} \pm \frac{\sqrt{25} \sqrt{-3}}{2}=-\frac{5}{2} \pm j \frac{5 \sqrt{3}}{2}=m \quad \text { [Complex Roots] }
$$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

If m_{1} and m_{2} then $y=A e^{m_{1} x}+B e^{m_{2} x}$
If $m=\alpha \pm j \beta$ then $y=e^{\alpha x}[A \cos (\beta x)+B \sin (\beta x)]$
If $r^{2}+k^{2}=0$ then $y=A \cos (k x)+B \sin (k x)$

Putting $\alpha=-\frac{5}{2}$ and $\beta=\frac{5 \sqrt{3}}{2}$ into (14.6) gives
$y=e^{-\frac{5}{2} x}\left[A \cos \left(\frac{5 \sqrt{3}}{2} x\right)+B \sin \left(\frac{5 \sqrt{3}}{2} x\right)\right]$
(c) Characteristic equation is

$$
\begin{aligned}
-m^{2}-3 m+8 & =0 \\
m^{2}+3 m-8 & =0 \quad[\text { Multiplying by }-1]
\end{aligned}
$$

Putting $a=1, b=3$ and $c=-8$ into (1.16)

$$
\begin{aligned}
& m=\frac{-3 \pm \sqrt{9+32}}{2}=-\frac{3}{2} \pm \frac{\sqrt{41}}{2} \\
& m_{1}=\frac{-3+\sqrt{41}}{2}, m_{2}=\frac{-3-\sqrt{41}}{2}
\end{aligned}
$$

By (14.4) $y=A e^{m_{1} x}+B e^{m_{2} x}$ where m_{1} and m_{2} are as above .

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } m_{1} \text { and } m_{2} \text { then } y=A e^{m_{1} x}+B e^{m_{2} x} \tag{14.4}
\end{equation*}
$$

