Complete solutions to Exercise 1(f)

1. a. $4(x+y+z)$
b. $8 x(1+y)$
C. $2(x-2 y)$
d. $x(3-2 x)$
e. Since x is common in both terms therefore we have

$$
x^{2}-x y=x(x-y)
$$

f. What is common in $16 x+4 x^{2}$?

Since $16 x=4 \times 4 x$ therefore

$$
16 x+4 x^{2}=(4 \times 4 x)+4 x^{2}=4 x(4+x)
$$

g. What is common between the two terms in the expression $9 x^{2}-27 x^{3}$?

The numbers 9 and 27 have 9 in common and x^{2} and x^{3} have x^{2} in common. Hence

$$
\begin{aligned}
9 x^{2}-27 x^{3} & =9 x^{2}-\left(9 x^{2} \times 3 x\right) \\
& =9 x^{2}(1-3 x)
\end{aligned}
$$

2. Taking out the common factor in each term:
(a) $\mathrm{s}=t\left(u+\frac{1}{2} a t\right)$
(b) $\mathrm{F}=\frac{m}{t}\left(v_{2}-v_{1}\right)$
(c) $F=\rho A v_{1} v_{2}-\rho A v_{1} v_{1}=\rho A v_{1}\left(v_{2}-v_{1}\right)$
3. We have $S=\pi r\left[r+\left(r^{2}+h^{2}\right)^{1 / 2}\right]$
4. Similar to EXAMPLES 24 and 25.
(a) $(x+5)(x+2)$
(b) $(x+4)(x+1)$
(c) $(x-4)(x-1)$
(d) $(x+2)(x-6)$
(e) $(2 x-1)(x+1)$
(f) $(x-4)(x+1)$
(g) $(3 x+5)(7 x-2)$
(h) How do we factorize $6 x^{2}+x-12$?

$$
6 x^{2}+x-12=(3 x-4)(2 x+3)
$$

5. We have (a) $x^{2}-2 x+1=(x-1)^{2}$
(b) $x^{2}+2 x+1=(x+1)^{2}$
(c) How do we factorize the given quadratic $x^{2}-36$?
$x^{2}-36$ is the difference of two squares which means we can use
(1.15) $a^{2}-b^{2}=(a-b)(a+b)$

Hence we have $x^{2}-36=x^{2}-6^{2}=(x-6)(x+6)$.
(d) Similarly by applying (1.15) and writing $(\sqrt{7})^{2}=7$ we have

$$
x^{2}-7=x^{2}-(\sqrt{7})^{2}=(x-\sqrt{7})(x+\sqrt{7})
$$

(e) This expression $4 x^{2}+12 x+9$ is more difficult to factorize:

$$
4 x^{2}+12 x+9=(2 x+3)(2 x+3)=(2 x+3)^{2}
$$

6. Use (1.15) for both cases:
(a) $Z^{2}-R^{2}=(Z-R)(Z+R)$ (b) $\omega^{2} L^{2}-\frac{1}{\omega^{2} C^{2}}=\left(\omega L-\frac{1}{\omega C}\right)\left(\omega L+\frac{1}{\omega C}\right)$
7. $F=\frac{2\left(V V_{s}-V^{2}\right)}{V_{s}^{2}-V^{2}}=\frac{2 V\left(V_{s}-V\right)}{\underbrace{\left(V_{s}-V\right)\left(V_{s}+V\right)}_{\text {by }(1.15)}}=\frac{2 V}{V_{s}+V} \quad\left[(1.15) \quad a^{2}-b^{2}=(a-b)(a+b)\right]$
(Cancelling the common term $\left(\mathrm{V}_{\mathrm{s}}-\mathrm{V}\right)$ in the numerator and denominator).
8. (a) Factorizing

$$
\begin{aligned}
\frac{3 w L x^{2}}{6 E I}-\frac{w x^{3}}{6 E I} & =\frac{3 w L x^{2}}{6 E I}-\frac{w x^{2} x}{6 E I} \\
& =\underbrace{\frac{w x^{2}}{6 E I}(3 L-x)}_{\begin{array}{c}
\text { takingouthe } \\
\text { common tactor }
\end{array}}
\end{aligned}
$$

(b) In a similar manner

$$
\begin{aligned}
\frac{w L x^{3}}{4 E I}-\frac{3 w x^{4}}{8 E I} & =\frac{2 w L x^{3}}{8 E I}-\frac{3 w x^{3} x}{8 E I} \\
& =\frac{w x^{3}}{8 E I}(2 L-3 x)
\end{aligned}
$$

(c) Also

$$
\begin{aligned}
\frac{w x^{4}}{24 E I}-\frac{w L x^{3}}{12 E I}+\frac{w L^{2} x^{2}}{24 E I} & =\frac{w x^{2} x^{2}}{24 E I}-\frac{2 w L x^{2} x}{24 E I}+\frac{w L^{2} x^{2}}{24 E I} \\
& =\frac{w x^{2}}{24 E I}\left(x^{2}\right)-\frac{w x^{2}}{24 E I}(2 L x)+\frac{w x^{2}}{24 E I} L^{2} \\
& =\frac{w x^{2}}{24 E I}\left(x^{2}-2 L x+L^{2}\right)
\end{aligned}
$$

How do we factorize the bracket term, $x^{2}-2 L x+L^{2}$?
We can use, (1.14), $a^{2}-2 a b+b^{2}=(a-b)^{2}$

$$
x^{2}-2 L x+L^{2}=(x-L)^{2}
$$

So we have

$$
\frac{w x^{4}}{24 E I}-\frac{w L x^{3}}{12 E I}+\frac{w L^{2} x^{2}}{24 E I}=\frac{w x^{2}}{24 E I}(x-L)^{2}
$$

9. Very similar to EXAMPLE 26.
10. We have x and w which is common in every term of the numerator and 4EI common on the denominator (4 goes into 8, 12 and 24). Hence

$$
\begin{align*}
y & =\frac{w x}{4 E I}\left(\frac{x^{2}}{3}\right)-\frac{w x}{4 E I}\left(\frac{l x}{2}\right)+\frac{w x}{4 E I}\left(\frac{l^{2}}{6}\right) \\
& =\frac{w x}{4 E I}\left(\frac{x^{2}}{3}-\frac{l x}{2}+\frac{l^{2}}{6}\right) \tag{†}
\end{align*}
$$

How do we handle the terms inside the bracket $\frac{x^{2}}{3}-\frac{l x}{2}+\frac{l^{2}}{6}$?
We need to determine the Lowest Common Multiple of 2, 3 and 6. Clearly it is 6. So

$$
\begin{aligned}
\frac{x^{2}}{3}-\frac{l x}{2}+\frac{l^{2}}{6} & =\frac{2 x^{2}}{6}-\frac{3 l x}{6}+\frac{l^{2}}{6} \\
& =\frac{2 x^{2}-3 l x+l^{2}}{6}
\end{aligned}
$$

Substituting this into (\dagger) gives

$$
\begin{aligned}
y & =\frac{w x}{4 E I}\left(\frac{2 x^{2}-3 I x+l^{2}}{6}\right) \\
& =\frac{w x}{24 E I}\left(2 x^{2}-3 l x+l^{2}\right)
\end{aligned}
$$

We need to factorize the terms in the bracket, $2 x^{2}-3 l x+l^{2}=(2 x-l)(x-l)$
Hence our result: $y=\frac{w x}{24 E I}(2 x-l)(x-l)$
11. (a) We have $\mathrm{N}=\frac{\mathrm{Z}_{0}+\frac{1}{2} \mathrm{Z}_{1}}{\mathrm{Z}_{0}-\frac{1}{2} \mathrm{Z}_{1}}$, multiply the numerator and denominator by 2 :

$$
N=\frac{2 Z_{0}+Z_{1}}{2 Z_{0}-Z_{1}}
$$

Multiplying both sides by $2 Z_{0}-Z_{1}$ and expanding gives

$$
\begin{aligned}
& \left(2 Z_{0}-Z_{1}\right) N=2 Z_{0}+Z_{1} \\
& 2 Z_{0} N-Z_{1} N=2 Z_{0}+Z_{1}
\end{aligned}
$$

Collecting the Z_{0} terms on the Left Hand Side and Z_{1} terms on the Right Hand Side:

$$
2 Z_{0} N-2 Z_{0}=Z_{1} N+Z_{1}
$$

Factorizing:

$$
2 Z_{0}(N-1)=Z_{1}(N+1)
$$

Thus $\quad Z_{1}=\frac{2 Z_{0}(N-1)}{N+1}=2 Z_{0}\left(\frac{N-1}{N+1}\right)$
(b) We have

$$
\begin{aligned}
Z_{1}(N-1)^{2}+2 Z_{0}\left(N^{2}-1\right) & =Z_{1}(N+1)^{2} \\
2 Z_{0}\left(N^{2}-1\right) & =Z_{1} \underbrace{\left[(N+1)^{2}-(N-1)^{2}\right]}_{=4 N} \\
& =4 N Z_{1}
\end{aligned}
$$

Hence $Z_{1}=\frac{2 Z_{0}\left(N^{2}-1\right)}{4 N}=\frac{Z_{0}\left(N^{2}-1\right)}{2 N}=Z_{0}\left(\frac{N^{2}-1}{2 N}\right)$

