Complete solutions to Exercise 1(g)

1. (a) $x=1 / 2$
(b) We need to factorize $x^{2}+5 x+6=0$. How?

$$
x^{2}+5 x+6=(x+3)(x+2)=0
$$

Therefore $x=-2, x=-3$.
(c) Factorizing $x^{2}-10 x+21$ gives

$$
x^{2}-10 x+21=(x-3)(x-7)=0
$$

This means that $x=3, x=7$.
(d) Factorizing the given quadratic $6 x^{2}-13 x-5$ gives

$$
6 x^{2}-13 x-5=(2 x-5)(3 x+1)=0
$$

We have

$$
\begin{gathered}
(3 x+1)=0 \text { or }(2 x-5)=0 \\
3 x=-1 \text { or } 2 x=5 \\
x=-\frac{1}{3} \text { or } x=\frac{5}{2}
\end{gathered}
$$

(e) In a similar manner we have $5 x^{2}+14 x-3=(5 x-1)(x+3)=0$. Solving this

$$
(5 x-1)(x+3)=0 \text { implies that } x=\frac{1}{5}, x=-3
$$

(f) How do we factorize $x^{2}-1$?

Use the difference of two squares (1.15) $a^{2}-b^{2}=(a-b)(a+b)$:

$$
x^{2}-1=(x-1)(x+1)=0
$$

Therefore $x=1, \quad x=-1$.
(g) Similarly we have

$$
x^{2}-2 x+1=(x-1)^{2}=0
$$

This means $x=1$.
(h) The factorization in this case is more difficult:

$$
4 x^{2}+8 x+4=(2 x+2)(2 x+2)=(2 x+2)^{2}=0
$$

How do we solve the equation $(2 x+2)^{2}=0$?

$$
(2 x+2)^{2}=0 \text { implies } 2 x+2=0 \text { which gives } x=-1 .
$$

Our solution is $x=-1$.
(i) How do we solve the given quadratic equation $3 x^{2}+9 x+6=0$?

By taking the elementary step of dividing this equation by 3 we have

$$
x^{2}+3 x+2=0
$$

It is easier to factorize $x^{2}+3 x+2=0$:

$$
x^{2}+3 x+2=(x+1)(x+2)=0
$$

Therefore $x=-1, \quad x=-2$.
(j) Again life is easier if we divide the given quadratic $-2 x^{2}+6 x-4=0$ by -2 :

$$
x^{2}-3 x+2=0
$$

How do we solve this quadratic $x^{2}-3 x+2=0$?
Factorizing gives $x^{2}-3 x+2=(x-1)(x-2)=0$ which implies $x=1, x=2$.
2. Substituting $v=35, a=3.2$ and $s=187$ into $u^{2}+2 a s=v^{2}$ gives

$$
\begin{aligned}
& u^{2}+(2 \times 3.2 \times 187)=35^{2} \\
& u^{2}=35^{2}-(2 \times 3.2 \times 187)=28.2 \\
& u=\sqrt{28.2}=5.31 \mathrm{~m} / \mathrm{s} \quad(2 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

3. Factorizing: $\quad 2 x^{2}-3 x L+L^{2}=(2 x-L)(x-L)$

$$
(2 x-L)(x-L)=0
$$

gives $2 x-L=0$ or $x-L=0$. Thus

$$
x=\frac{L}{2} \text { or } x=L .
$$

4. We have $4.3 t^{2}+1.9 t=50$. Rearranging

$$
4.3 t^{2}+1.9 t-50=0
$$

Using (1.16) $\quad t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ with $a=4.3, b=1.9$ and $c=-50$ gives

$$
\begin{aligned}
t & =\frac{-1.9 \pm \sqrt{1.9^{2}-(4 \times 4.3 \times(-50))}}{2 \times 4.3} \\
& =\frac{-1.9 \pm \sqrt{3.61+860}}{8.6} \\
& =\frac{-1.9 \pm 29.387}{8.6} \\
t & =\frac{-1.9+29.387}{8.6} \quad \text { or } \quad \frac{-1.9-29.387}{8.6}
\end{aligned}
$$

Since $t \geq 0$ so $t=3.20$ s (2d.p.).
5. Let w be the width then $\mathrm{w}=\ell-5$ and

$$
\begin{aligned}
& \ell(\ell-5)=84 \\
& \ell^{2}-5 \ell-84=0 \\
& (\ell-12)(\ell+7)=0 \\
& \ell=12 \quad \text { or } \quad \ell=-7
\end{aligned}
$$

Dimensions are $\ell=12 \mathrm{~m}$ and $\mathrm{w}=12-5=7 \mathrm{~m}$.
6. Putting $\mathrm{M}=0$ gives $-20 x^{2}-500 x+3000=0$

Dividing by $-20: \quad x^{2}+25 x-150=0$
Factorizing

$$
\begin{array}{r}
(x-5)(x+30)=0 \\
x=5 \text { or } x=-30
\end{array}
$$

Hence $x=5$ gives $M=0$.
7. $M=\frac{15}{8} x-\frac{29}{4}\left(x-\frac{1}{2}\right)^{2}=\frac{15}{8} x-\frac{58}{8}\left(x-\frac{1}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{8}[15 x-58(\underbrace{\left(x^{2}-x+0.25\right)}_{\text {by }(1.14)}] \\
& =\frac{1}{8}\left[15 x-58 x^{2}+58 x-14.5\right] \\
& =\frac{1}{8}\left[73 x-58 x^{2}-14.5\right]
\end{aligned}
$$

With $\mathrm{M}=0$ we have

$$
-58 x^{2}+73 x-14.5=0
$$

Multiplying by -1 gives $58 x^{2}-73 x+14.5=0$
Putting $\mathrm{a}=58, \mathrm{~b}=-73$ and $\mathrm{c}=14.5$ into (1.16) $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ gives

$$
\begin{aligned}
x & =\frac{73 \pm \sqrt{(-73)^{2}-(4 \times 58 \times 14.5)}}{2 \times 58} \\
& =1.011 \quad \text { or } \quad 0.247
\end{aligned}
$$

$x=1.01 \mathrm{~m}$ (2 d.p.) or $x=0.25 \mathrm{~m}$ (2 d.p.)
8. Putting $\mathrm{h}=0$ gives $-4.9 t^{2}+55 t+12=0$. So solving produces $t=11.44 \mathrm{~s}$
9. We have $h=0$ because h is the height above ground, so

$$
-\frac{1}{2} g t^{2}+u t+h_{0}=0
$$

Multiplying by $-1: \quad \frac{1}{2} g t^{2}-u t-h_{0}=0$
Putting $a=\frac{1}{2} g, \quad b=-u$ and $c=-h_{0}$ into (1.16) gives

$$
\begin{aligned}
& t=\frac{u \pm \sqrt{(-u)^{2}-\left(4 \times \frac{1}{2} g \times\left(-h_{0}\right)\right)}}{2 \times \frac{1}{2} g} \\
& t=\frac{u \pm \sqrt{u^{2}+2 g h_{0}}}{g}
\end{aligned}
$$

$$
\begin{equation*}
(a-b)^{2}=a^{2}-2 a b+b^{2} \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

10. We have

$$
\begin{aligned}
& \frac{-T}{2 w L^{\frac{3}{2}}}=\frac{4 k L^{\frac{5}{2}}-3 D L^{\frac{1}{2}}-3 k L^{\frac{5}{2}}}{2 L^{3}} \\
& =\frac{k L^{\frac{5}{2}}-3 D L^{\frac{1}{2}}}{2 L^{3}} \\
& \underset{\text { dividing numerator }}{\bar{j}} \frac{k L^{-\frac{1}{2}}-3 D L^{-\frac{5}{2}}}{2} \\
& \text { divi } \\
& \text { and denominator by } \\
& \frac{k L^{-\frac{1}{2}}-3 D L^{-\frac{5}{2}}}{2}+\frac{T}{2 w L^{\frac{3}{2}}}=0
\end{aligned}
$$

Multiplying by $2 \mathrm{~L}^{\frac{5}{2}}$ gives a quadratic

$$
\begin{aligned}
& k L^{2}-3 D+\frac{T}{w} L=0 \\
& k L^{2}+\frac{T}{w} L-3 D=0
\end{aligned}
$$

How do we solve this quadratic?
Use (1.16) with $a=k, b=\frac{T}{w}$ and $c=-3 D$:

$$
\begin{aligned}
L & =\frac{-\frac{T}{w} \pm \sqrt{\frac{T^{2}}{w^{2}}+(4 k \times 3 D)}}{2 k} \\
& =\frac{-\frac{T}{w} \pm \sqrt{\frac{T^{2}+(4 k \times 3 D) w^{2}}{w^{2}}}}{2 k} \\
& =\frac{-\frac{T}{w} \pm \frac{1}{w} \sqrt{T^{2}+12 k D w^{2}}}{2 k} \\
L & =\frac{-T \pm \sqrt{T^{2}+12 k D w^{2}}}{2 k w}
\end{aligned}
$$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

