Complete solutions to Exercise 1(h)

1. (a) Similar to EXAMPLE 30, $x=1, y=1$.
(b) We add the two given simultaneous equations:

$$
\begin{gathered}
x+y=2 \\
+\quad x-y=0 \\
\hline 2 x+0=2
\end{gathered}
$$

We have $2 x=2$ which gives $x=1$. How do we find the value of the other unknown, y ?
Substitute $x=1$ into the first equation $x+y=2$:

$$
1+y=2 \text { which gives } y=1
$$

Hence $x=1$ and $y=1$ is the solution.
(c) We can label each linear equation

$$
\begin{array}{r}
2 x-3 y=5 \\
x-y=2 \tag{**}
\end{array}
$$

How do we eliminate one of the unknowns?
Eliminate x by multiplying equation $\left({ }^{* *}\right)$ by 2 and subtracting from equation $\left({ }^{*}\right)$:

$$
\begin{array}{cc}
2 x-3 y=5 & (*) \tag{*}\\
-\quad 2 x-2 y=4 & {[\text { Multiplying }(* *) \text { by } 2]} \\
\hline 0-y=1
\end{array}
$$

Hence $y=-1$. How do we determine x ?
By substituting $y=-1$ into the given equation (${ }^{* *}$):

$$
\begin{aligned}
x-(-1) & =2 \\
x+1 & =2 \text { which gives } x=1
\end{aligned}
$$

The solution is $x=1$ and $y=-1$.
(d) We label each equation:

$$
\begin{gather*}
2 x-3 y=35 \\
x-y=2
\end{gather*}
$$

We need to eliminate one of the unknowns. Which one?
To make life easier it is better to eliminate x. How?
Multiply equation (\$\$) by 2 and subtract from equation (\$):

$$
\begin{array}{cl}
2 x-3 y=35 \\
-\quad 2 x-2 y=4 & \text { [\$) } \\
\hline 0-y=31
\end{array}
$$

We have $y=-31$. How do we find x ?
Substitute $y=-31$ into the given equation (\$\$):

$$
\begin{aligned}
& x-(-31)=2 \\
& x+31=2 \text { which gives } x=-29
\end{aligned}
$$

The solution is $x=-29$ and $y=-31$.
(e) We label each equation:

$$
\begin{align*}
& 5 x-7 y=2 \\
& 9 x-3 y=6
\end{align*}
$$

We need to eliminate one of the unknowns. Which one?
Eliminate y. How?
Multiply equation (\dagger) by 3 and multiply ($\dagger \dagger$) by 7 :

$$
\begin{array}{ll}
15 x-21 y=6 & {[\text { Multiplying }(\dagger) \text { by } 3]} \\
63 x-21 y=42 & {[\text { Multiplying }(\dagger \dagger) \text { by } 7]}
\end{array}
$$

To eliminate y we subtract these equations

$$
63 x-21 y=42
$$

$$
\begin{gather*}
-\quad 15 x-21 y=6 \tag{Subtracting}\\
\hline 48 x-0=36
\end{gather*}
$$

From $48 x=36$ we have $x=\frac{36}{48}=\frac{3}{4}$. How do we find y ?
Substitute $x=\frac{3}{4}$ into the given equation (\dagger) :

$$
\begin{aligned}
& 5\left(\frac{3}{4}\right)-7 y=2 \\
& \frac{15}{4}-7 y=2 \\
& 7 y=\frac{15}{4}-2=\frac{7}{4}
\end{aligned}
$$

How do find y from $7 y=\frac{7}{4}$?
Dividing both sides by 7 :

$$
y=\frac{7}{4(7)}=\frac{1}{4}
$$

The solution is $x=\frac{3}{4}$ and $y=\frac{1}{4}$.
(f) We have the equations

$$
\begin{align*}
& \pi x-5 y=2 \tag{*}\\
& \pi x-y=1 \tag{**}
\end{align*}
$$

Subtracting these equations we have

$$
\begin{gathered}
\pi x-5 y=2 \\
-\quad \pi x-y=1 \\
\hline 0-4 y=1
\end{gathered}
$$

From the last line $-4 y=1$ we have $y=-\frac{1}{4}$. How do we determine x ?
Substitute $y=-\frac{1}{4}$ into $\left({ }^{(* *)}\right.$:

$$
\begin{aligned}
& \pi x-\left(-\frac{1}{4}\right)=1 \\
& \pi x+\frac{1}{4}=1 \quad \pi x=\frac{3}{4} \quad \text { which gives } x=\frac{3}{4 \pi}
\end{aligned}
$$

The solution is $x=\frac{3}{4 \pi}$ and $y=-\frac{1}{4}$.
2. Putting $\mathrm{E}=53, \mathrm{~W}=120$ into $E=a W+b$ gives

$$
53=120 a+b
$$

and $\mathrm{E}=45.5, \mathrm{~W}=70$ into $E=a W+b$ gives

$$
\begin{equation*}
45.5=70 a+b \tag{††}
\end{equation*}
$$

Subtract ($\dagger \dagger$) from (\dagger)

$$
\begin{aligned}
& 7.5=50 a \\
& a=\frac{7.5}{50}=0.15
\end{aligned}
$$

Hence
Substituting $\mathrm{a}=0.15$ into (\dagger) gives

$$
\begin{gathered}
(120 \times 0.15)+b=53 \\
18+b=53 \\
b=35 \mathrm{~N}
\end{gathered}
$$

Putting $a=0.15$ and $b=35$ into $E=a W+b$ gives $\mathrm{E}=0.15 \mathrm{~W}+35$
3. Putting $t=2, s=33$ into $u t+\frac{1}{2} a t^{2}=s$ gives

$$
\begin{align*}
2 u+\left(\frac{1}{2} a 2^{2}\right) & =33 \\
2 u+2 a & =33
\end{align*}
$$

Putting $t=3, s=64.5$ into $u t+\frac{1}{2} a t^{2}=s$ gives

$$
\begin{align*}
& 3 u+\frac{3^{2}}{2} a=64.5 \\
& 3 u+4.5 a=64.5
\end{align*}
$$

Multiply (\dagger) by 3

$$
\begin{equation*}
6 u+6 a=99 \tag{*}
\end{equation*}
$$

Multiply ($\dagger \dagger$) by 2

$$
\begin{equation*}
6 u+9 a=129 \tag{**}
\end{equation*}
$$

$\left({ }^{* *}\right)-\left({ }^{*}\right)$ gives

$$
\begin{aligned}
3 a & =30 \\
a & =10
\end{aligned}
$$

Substituting $\mathrm{a}=10$ into (\dagger)

$$
\begin{gathered}
2 \mathrm{u}+20=33 \\
2 \mathrm{u}=13 \\
\mathrm{u}=6.5 \\
a=10 \mathrm{~m} / \mathrm{s}^{2} \text { and } \mathrm{u}=6.5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

4. Opening up the brackets gives

$$
\begin{gathered}
25 I_{1}-25 I_{2}+56 I_{1}=2.225 \\
17 I_{2}-3 I_{1}+3 I_{2}=1.31
\end{gathered}
$$

Simplifying

$$
\begin{aligned}
& 81 I_{1}-25 I_{2}=2.225 \\
& -3 I_{1}+20 I_{2}=1.31
\end{aligned}
$$

Solving these gives $I_{1}=50 \mathrm{~mA}$ and $I_{2}=73 \mathrm{~mA}$
5. We have

$$
\begin{align*}
& \ell_{0}(1+55 \alpha)=20.11 \\
& \ell_{0}(1+120 \alpha)=20.24
\end{align*}
$$

(\dagger) divided by $(\dagger \dagger)$ gives

$$
\begin{gathered}
\frac{\ell_{0}(1+55 \alpha)}{\ell_{0}(1+120 \alpha)}=\frac{20.11}{20.24} \\
20.24(1+55 \alpha)=20.11(1+120 \alpha) \\
20.24+1113.2 \alpha=20.11+2413.2 \alpha \\
20.24-20.11=2413.2 \alpha-1113.2 \alpha \\
0.13=1300 \alpha \\
\alpha=\frac{0.13}{1300}=1 \times 10^{-4}
\end{gathered}
$$

Substituting $\alpha=1 \times 10^{-4}$ into ($\dagger \dagger$) results in

$$
\begin{gathered}
\ell_{0}\left(1+\left(120 \times 1 \times 10^{-4}\right)\right)=20.24 \\
1.012 \ell_{0}=20.24 \\
\ell_{0}=20
\end{gathered}
$$

Hence $\ell_{0}=20 \mathrm{~m}$ and $\alpha=1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
6. From the first formula we have $\frac{1}{R_{1}}=\left(1.2 \times 10^{-3}\right)-\frac{1}{R_{2}}$

Substituting this into

$$
\frac{5}{R_{1}}+\frac{8}{R_{2}}=5\left(\frac{1}{R_{1}}\right)+\frac{8}{R_{2}}=6.6 \times 10^{-3}
$$

gives

$$
\begin{aligned}
& 5\left(\left(1.2 \times 10^{-3}\right)-\frac{1}{R_{2}}\right)+\frac{8}{R_{2}}=6.6 \times 10^{-3} \\
&\left(6 \times 10^{-3}\right)+\frac{3}{R_{2}}=\left(6.6 \times 10^{-3}\right) \\
& \frac{3}{R_{2}}=\left(6.6 \times 10^{-3}\right)-\left(6 \times 10^{-3}\right)=6 \times 10^{-4} \\
& R_{2}=\frac{3}{6 \times 10^{-4}}=5000
\end{aligned}
$$

Substituting R_{2} into (\dagger) gives

$$
\begin{aligned}
& \frac{1}{R_{1}}=\left(1.2 \times 10^{-3}\right)-\frac{1}{5000}=0.001 \\
& R_{1}=\frac{1}{0.001}=1000 \\
& R_{1}=1 \mathrm{k} \Omega \text { and } R_{2}=5 \mathrm{k} \Omega
\end{aligned}
$$

7. Using TABLE 1 and considering dimensions

$$
\begin{aligned}
& M L T^{-2}=\left(M L^{-3}\right)^{a}\left(L^{2}\right)^{b}\left(L T^{-1}\right)^{c} \\
& \sum_{\begin{array}{c}
\text { using riles } \\
\text { of indices }
\end{array}} M^{a} L^{-3 a} L^{2 b} L^{c} T^{-c} \\
& M L T^{-2}=M^{a} \underbrace{L^{-3 a+2 b+c}}_{\text {by }(1.5)} T^{-c}
\end{aligned}
$$

Equating powers of M, L and T respectively gives

$$
\begin{align*}
& 1=a \\
& 1=-3 a+2 b+c \tag{*}\\
& -2=-c \text { so } c=2
\end{align*}
$$

Substituting $a=1, c=2$ into (*)

$$
\begin{array}{r}
-3+2 b+2=1 \\
b=1
\end{array}
$$

Substituting $a=1, b=1$ and $c=2$ into $\mathrm{F}=\mathrm{K} \rho^{\mathrm{a}} \mathrm{A}^{\mathrm{b}} \mathrm{v}^{\mathrm{c}}$ gives

$$
\mathrm{F}=\mathrm{K} \rho \mathrm{~A} v^{2}
$$

