Complete solutions to Exercise 2(d)

1. (a) $x^{2}-4 x+3=(x-2)^{2}-4+3$

$$
=(x-2)^{2}-1
$$

(b) How do we complete the square on $x^{2}+8 x+9$?

Consider half the x coefficient, that is half of 8 :

$$
\begin{aligned}
x^{2}+8 x+9 & =(x+4)^{2}-16+9 \\
& =(x+4)^{2}-7
\end{aligned}
$$

(c) Similarly we have

$$
\begin{aligned}
x^{2}-6 x+8 & =(x-3)^{2}-9+8 \\
& =(x-3)^{2}-1
\end{aligned}
$$

(d) Completing the square on the given quadratic we have

$$
\begin{aligned}
x^{2}-10 x+2 & =(x-5)^{2}-25+2 \\
& =(x-5)^{2}-23
\end{aligned}
$$

(e) $9+8 x-x^{2}=9-\left(x^{2}-8 x\right)$

$$
=9-[(x-4)^{2}-\underbrace{16}_{4^{2}}]=25-(x-4)^{2}
$$

(f) $x^{2}+7 x+1=\left(x+\frac{7}{2}\right)^{2}-\left(\frac{7}{2}\right)^{2}+1=\left(x+\frac{7}{2}\right)^{2}-\frac{45}{4}$
(g) $2 x^{2}+7 x+1=2\left[x^{2}+\frac{7}{2} x+\frac{1}{2}\right]$

$$
\begin{aligned}
& =2\left[\left(x+\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}+\frac{1}{2}\right] \\
& =2\left[\left(x+\frac{7}{4}\right)^{2}-\frac{41}{16}\right] \\
& =2\left(x+\frac{7}{4}\right)^{2}-\frac{41}{8}
\end{aligned}
$$

2. Similar to EXAMPLE 11. All the hard work has been done in solution 1.
(a) From solution 1(a) we have

$$
\begin{aligned}
& (x-2)^{2}-1=0 \\
& (x-2)^{2}=1, x-2= \pm 1 \text { which gives } x=1, x=3
\end{aligned}
$$

(b) By the above solution 1(b):

$$
\begin{gathered}
x^{2}+8 x+9=(x+4)^{2}-7=0 \\
(x+4)^{2}=7 \text { implies that } x+4= \pm \sqrt{7}
\end{gathered}
$$

This means that $x=-4 \pm \sqrt{7}$ which is $x=-4-\sqrt{7}, \quad x=-4+\sqrt{7}$
(c) By solution 1(c) we have $x^{2}-6 x+8=(x-3)^{2}-1$. Equating this to zero yields

$$
\begin{aligned}
(x-3)^{2}-1 & =0 \\
(x-3)^{2} & =1 \text { which means that } x-3= \pm \sqrt{1}
\end{aligned}
$$

We have $x=3 \pm 1=2,4$.
(d) From solution to 1 (d) we have $x^{2}-10 x+2=(x-5)^{2}-23$. Equating this to zero yields:

$$
\begin{aligned}
(x-5)^{2}-23 & =0 \\
(x-5)^{2} & =23 \\
x-5 & = \pm \sqrt{23} \text { implies that } x=5 \pm \sqrt{23}
\end{aligned}
$$

We have $x=5-\sqrt{23}, \quad x=5+\sqrt{23}$.
(e) Similarly

$$
\begin{aligned}
25-(x-4)^{2} & =0 \\
(x-4)^{2}=25, x-4 & = \pm \sqrt{25}= \pm 5 \\
x & =4 \pm 5 \text { which gives } x=-1,9
\end{aligned}
$$

(f) We have

$$
\begin{aligned}
\left(x+\frac{7}{2}\right)^{2}-\frac{45}{4} & =0 \\
\left(x+\frac{7}{2}\right)^{2}=\frac{45}{4}, x+\frac{7}{2} & = \pm \sqrt{\frac{45}{4}}= \pm \frac{\sqrt{45}}{2} \\
x & =-\frac{7}{2} \pm \frac{\sqrt{45}}{2}=\frac{-7 \pm \sqrt{45}}{2}
\end{aligned}
$$

(g) Very similar to the above. We have

$$
\begin{aligned}
& 2\left(x+\frac{7}{4}\right)^{2}-\frac{41}{8}=0 \\
& 2\left(x+\frac{7}{4}\right)^{2}=\frac{41}{8},\left(x+\frac{7}{4}\right)^{2}=\frac{41}{16} \\
& x+\frac{7}{4}= \pm \sqrt{\frac{41}{16}}= \pm \frac{\sqrt{41}}{4} \\
& x=\frac{-7 \pm \sqrt{41}}{4}
\end{aligned}
$$

3. When $t=0, V=6$. To find minimum or maximum we need to complete the square.

$$
\begin{aligned}
V & =t^{2}-5 t+6 \\
& =\left(t-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}+6 \\
V & =\left(t-\frac{5}{2}\right)^{2}-\frac{1}{4}
\end{aligned}
$$

We have a minimum at $\mathrm{t}=\frac{5}{2}=2.5$ with $V=-\frac{1}{4}$. Need to find the values of t which gives $V=0$.

$$
\begin{gathered}
t^{2}-5 t+6=0 \\
(t-3)(t-2)=0 \\
t=3,2
\end{gathered}
$$

Hence the graph V cuts the t axis at $t=2, t=3$.

4. At $t=0, V=0$. Completing the square:

$$
\begin{aligned}
V & =t^{2}-t \\
& =\left(t-\frac{1}{2}\right)^{2}-\frac{1}{4}
\end{aligned}
$$

This gives a minimum at $\mathrm{t}=\frac{1}{2}=0.5$ with $V=-\frac{1}{4}$. To find the values of t which gives zero voltage,

$$
\begin{aligned}
& t^{2}-t=0 \\
& t(t-1)=0 \text { gives } t=0, \quad t=1
\end{aligned}
$$

Combining all the information gives the graph:

5. Since there is $\mathrm{a}-\mathrm{t}^{2}$ term, we know it is a quadratic of the form \cap. Also $h=12 t-t^{2}$ cuts the t axis where $h=0$:

$$
\begin{aligned}
& 12 t-t^{2}=0 \\
& t(12-t)=0 \text { gives } t=0, t=12
\end{aligned}
$$

The highest point is reached when $12 \mathrm{t}-\mathrm{t}^{2}$ is a maximum. It can be found by completing the square:

$$
\begin{aligned}
12 t-t^{2} & =-\left(t^{2}-12 t\right) \\
& =-\left[(t-6)^{2}-36\right] \\
& =-36-(t-6)^{2}
\end{aligned}
$$

Hence $t=6$ gives maximum height $h=36$:

6. To find the maximum height we need to complete the square on h.

$$
\begin{aligned}
h=200 t & -4.9 t^{2}=-\left(4.9 t^{2}-200 t\right) \\
& =-4.9\left(t^{2}-\frac{200}{4.9} t\right) \\
& =-4.9\left(t^{2}-40.82 t\right) \\
& =-4.9\left(t-\frac{40.82}{2}\right)^{2}+\left[4.9 \times\left(\frac{40.82}{2}\right)^{2}\right] \\
\mathrm{h} & =-4.9(\mathrm{t}-20.41)^{2}+2041.18
\end{aligned}
$$

The maximum height reached is 2041.18 m when $t=20.41 \mathrm{~s}$. The height, $\mathrm{h}=0$ when

$$
\begin{aligned}
200 t-4.9 t^{2} & =0 \\
t(200-4.9 t) & =0 \\
t=0, \quad t & =\frac{200}{4.9}=40.82
\end{aligned}
$$

2041.18

7. $\mathrm{M}=0$ when $L x-x^{2}=0$. That is

$$
x(L-x)=0 \text { gives } x=0, x=L
$$

To find maximum or minimum, complete the square on $L x-x^{2}$;

$$
\begin{aligned}
& L x-x^{2}=-\left(x^{2}-L x\right) \\
& =-\left(x-\frac{L}{2}\right)^{2}+\frac{L^{2}}{4}
\end{aligned}
$$

Maximum occurs at $\mathrm{x}=\frac{\mathrm{L}}{2}$. To find the maximum value we substitute $x=\frac{L}{2}$ into $M=\frac{W}{24 E I}\left(L x-x^{2}\right)$

$$
\begin{aligned}
M=\frac{W}{24 E I}\left[L \cdot \frac{L}{2}-\frac{L^{2}}{4}\right] & =\frac{W}{24 E I}\left[\frac{L^{2}}{2}-\frac{L^{2}}{4}\right] \\
& =\frac{W}{24 E I}\left(\frac{L^{2}}{4}\right)
\end{aligned}
$$

Maximum value is

$$
M=\frac{W L^{2}}{(24 E I) \times 4}=\frac{W L^{2}}{96 E I}
$$

Hence the graph is

8. We divide the quadratic equation $a x^{2}+b x+c=0$ by a :

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Completing the square:

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a} & =0 \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
& =\frac{b^{2}}{4 a^{2}}-\frac{4 a c}{4 a^{2}}=\frac{b^{2}-4 a c}{4 a^{2}}
\end{aligned}
$$

Taking the square roots of both sides:

$$
\begin{aligned}
x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} & = \pm \frac{\sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}} \\
& = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Making x the subject:

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

