Complete solutions to Exercise 5(c)

1. We use our calculator:
(a) $G=\ln \left(\frac{0.1}{0.01}\right)=2.30$ nep
(b) $G=\ln \left(\frac{10}{0.1}\right)=4.61$ nep
(c) $G=\ln \left(\frac{5}{15}\right)=-1.10$ nep
2. (a) $G=\frac{1}{2} \ln \left(\frac{1}{0.2}\right)=0.80$ nep \quad (b) $G=\frac{1}{2} \ln (20)=1.50$ nep
3. Remember $1 \mathrm{mV}=1 \times 10^{-3} \mathrm{~V}$.

$$
G=20 \log \left(\frac{1}{1 \times 10^{-3}}\right)=20 \log \left(10^{3}\right) \underbrace{(5.19)}_{\text {by }}=(3 \times 20) \underbrace{\log (10)}_{=1}=60 \mathrm{~dB}
$$

4. We use $G=10 \log \left(P_{\text {out }} / P_{\text {in }}\right)$ with $G=5$ and $P_{\text {in }}=0.1$:

$$
\begin{aligned}
10 \log \left(\frac{P_{\text {out }}}{0.1}\right) & =5 \\
\log \left(\frac{P_{\text {out }}}{0.1}\right) & =\frac{5}{10}=0.5
\end{aligned}
$$

How do remove the log function?
Taking exponentials to the base 10 :

$$
\begin{aligned}
& \frac{P_{\text {out }}}{0.1}=10^{0.5} \\
& P_{\text {out }}=0.1 \times 10^{0.5}=0.316 \mathrm{~W}
\end{aligned}
$$

5. Since 10 is a common factor of the Right Hand Side we have:

$$
\begin{aligned}
G & =10\left[\log \left(p_{1}\right)+\log \left(p_{2}\right)+\log \left(p_{3}\right)\right] \\
& =10 \log \left(p_{1} \times p_{2} \times p_{3}\right)
\end{aligned}
$$

6. Substituting $p_{\text {out }}=I_{\text {out }}^{2} R$ and $p_{\text {in }}=I_{\text {in }}^{2} R$ into $G=10 \log \left(\frac{p_{\text {out }}}{p_{\text {in }}}\right)$ gives:

$$
\begin{aligned}
& G=10 \log \left(\frac{I_{\text {out }}^{2} R}{I_{\text {in }}^{2} R}\right) \\
&=10 \log \left[\left(\frac{I_{\text {out }}}{I_{\text {in }}}\right)^{2}\right]\left(\text { Cancelling } R^{\prime} s\right) \\
& G \underset{\text { by }}{=}=20 \log \left(\frac{I_{\text {out }}}{I_{\text {in }}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\log (A)+\log (B)=\log (A \times B) \tag{5.17}
\end{equation*}
$$

$$
\begin{equation*}
\log \left(A^{n}\right)=n \log (A) \tag{5.19}
\end{equation*}
$$

7. We have:

$$
\begin{aligned}
& 20 \log \left(\frac{I_{\text {out }}}{I_{\text {in }}}\right)=20 \\
& \log \left(\frac{I_{\text {out }}}{I_{\text {in }}}\right)=1 \quad(\text { Dividing by } 20) \\
& \begin{aligned}
\left(\frac{I_{\text {out }}}{I_{\text {in }}}\right) & =10^{1}=10 \\
I_{\text {out }} & =10 \times I_{\text {in }} \quad\left(\text { Multiplying by } I_{\text {in }}\right) \\
& =10 \times 1 \times 10^{-3} \quad\left(\text { because } I_{\text {in }}=1 \times 10^{-3}\right) \\
I_{\text {out }} & =0.01 \mathrm{~A}
\end{aligned}
\end{aligned}
$$

8. By substituting $p_{\text {out }}=\frac{V_{\text {out }}^{2}}{R}$ and $p_{\text {in }}=\frac{V_{\text {in }}^{2}}{R}$ into $G=10 \log \left(\frac{p_{\text {out }}}{p_{\text {in }}}\right)$ gives:

$$
\begin{aligned}
G & =10 \log \left(\frac{V_{\text {out }}^{2} / R}{V_{\text {in }}^{2} / R}\right) \\
& =10 \log \left(\frac{V_{\text {out }}^{2}}{V_{\text {in }}^{2}}\right) \\
& =10 \log \left[\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)^{2}\right] \underset{\text { by (5.19) }}{=} 20 \log \left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)
\end{aligned}
$$

9. Let $p=\frac{p_{o}}{p_{i}}$ then we have:
(a) $10 \log (p)=3$ gives $\log (p)=\frac{3}{10}=0.3$ (Dividing by 10)

Taking exponential to the base 10: $p=10^{0.3}=2$
(b) $10 \log (p)=10$. Thus $\log (p)=1$:

$$
p=10^{1}=10
$$

(c) Similarly $10 \log (p)=20, \log (p)=2$:

$$
p=10^{2}=100
$$

To find the voltage ratio, $\frac{V_{o}}{V_{i}}=V$, we only have to take the square root of the p
values, because $V=\sqrt{p}$ from $\log (p)=\log \left(V^{2}\right)$ or $V^{2}=p$:
(a) $V^{2}=2$ gives $V=\sqrt{2}$
(b) $V^{2}=10$ gives $V=\sqrt{10}$
(c) $V^{2}=100$ gives $V=10$
10. We have

$$
\begin{align*}
& 9-10 e^{-t}=0 \\
& \left.9=10 e^{-t} \quad \text { Rearranging }\right) \\
& e^{-t}=0.9 \quad(\text { Dividing by } 10) \\
& \quad \log \left(A^{n}\right)=n \log (A) \tag{5.19}
\end{align*}
$$

Taking natural logs, \ln, of both sides gives:

$$
\begin{gathered}
\ln \left(e^{-t}\right)=\ln (0.9) \\
-t \underbrace{\ln (e)}_{=1}=\ln (0.9) \\
-t=\ln (0.9) \\
t=-\ln (0.9)=0.105 \sec s
\end{gathered}
$$

11. We have:

$$
\begin{aligned}
& 9\left(1-e^{-0.1 t}\right)=3 \\
& 1-e^{-0.1 t}=\frac{3}{9}=\frac{1}{3} \quad(\text { Dividing by } 9) \\
& 1-\frac{1}{3}=e^{-0.1 t} \quad \text { (Rearranging) } \\
& e^{-0.1 t}=\frac{2}{3}
\end{aligned}
$$

Taking natural logs, \ln, of both sides gives $\ln \left(e^{-0.1 t}\right)=\ln \left(\frac{2}{3}\right)$, so by (5.13) we have:

$$
\begin{aligned}
-0.1 \underbrace{\ln }_{=1}(e) & =\ln \left(\frac{2}{3}\right)=-0.405 \\
t & =\frac{-0.405}{-0.1}=4.05 \mathrm{secs}
\end{aligned}
$$

12. Applying the change of base rule, (5.23), in each case and rounding to 3 d.p. we have
(a) $\log _{2}(7.6)=\frac{\ln (7.6)}{\ln (2)}=2.926$
(b) $\log _{7.6}(2)=\frac{\ln (2)}{\ln (7.6)}=0.342$
(c) $\log _{7}(6.3)=\frac{\ln (6.3)}{\ln (7)}=0.946$
(d) $\log _{6.3}(7)=\frac{\ln (7)}{\ln (6.3)}=1.057$
13. (a) $\ln [\ln (1000)]=\ln (6.907)=1.93$
(b) $\ln \left[\ln \left(10^{10}\right)\right]=\ln [23.026]=3.14$
(c) $\ln \left[\ln \left(10^{50}\right)\right]=\ln [115.129]=4.75$

The $\ln (\ln)$ function makes a large number much smaller.
14. By EXAMPLE 9 we have $\log \left(P V^{n}\right)=\log (C)$. Taking exponentials to the base 10 gives:

$$
P V^{n}=C
$$

15. We have

$$
e^{x \ln (a)}=\left[e^{\ln (a)}\right]_{\text {by }}^{\text {(5.16) }}=[a]^{x}=a^{x}
$$

$$
\begin{equation*}
\ln \left(A^{n}\right)=n \ln (A) \tag{5.13}
\end{equation*}
$$

$$
\begin{equation*}
\log _{a}(N)=\frac{\log _{b}(N)}{\log _{b}(a)} \tag{5.23}
\end{equation*}
$$

16. By taking exponential of both sides we obtain

$$
\begin{aligned}
& e^{\ln (1+y)}=e^{x+x^{2} / 2} \\
& \underbrace{1+y=\underbrace{e^{x} e^{x^{2} / 2}}_{\text {by }(5.1)}}_{\text {by }(5.16)} \\
& y=e^{x^{2} / 2} e^{x}-1
\end{aligned}
$$

17. (a) How do we solve $27^{x}=3$?

Note that $27=3^{3}$. Substituting this $27=3^{3}$ we have

$$
\begin{aligned}
\left(3^{3}\right)^{x} & =3 \\
3^{3 x} & =3 \quad\left[\text { Using }\left(a^{m}\right)^{n}=a^{m n}\right]
\end{aligned}
$$

This means that $3 x=1$ which implies that $x=\frac{1}{3}$.
(b) We need to solve $5 \ln \left(x^{2}-9\right)=3$. Dividing by 5 yields

$$
\ln \left(x^{2}-9\right)=0.6
$$

Taking exponential of both sides gives

$$
x^{2}-9=e^{0.6}=1.822
$$

Adding 9 to both sides gives

$$
\begin{aligned}
& x^{2}=9+1.822=10.822 \\
& x= \pm \sqrt{10.822}= \pm 3.29
\end{aligned}
$$

(c) How do we solve $\log _{9}\left(3^{x-1}\right)=x$?

By using the definition of logs we have

$$
\begin{aligned}
& 3^{x-1}=9^{x} \\
& 3^{x-1}=\left(3^{2}\right)^{x}=3^{2 x}
\end{aligned}
$$

We have $x-1=2 x$ implies that $x=-1$.
(d) Taking natural logs of $3^{x}=18$:

$$
\begin{aligned}
& \ln \left(3^{x}\right)=\ln (18) \\
& x \ln (3)=\ln (18) \quad \text { implies that } \quad x=\frac{\ln (18)}{\ln (3)}=2.63
\end{aligned}
$$

$$
\begin{align*}
a^{m+n} & =a^{m} a^{n} \tag{5.1}\\
e^{\ln (a)} & =a \tag{5.16}
\end{align*}
$$

18. We have

$$
\begin{aligned}
\theta_{1}- & \theta_{2}=-\frac{Q}{2 \pi k L}\left[\ln \left(r_{1}\right)-\ln \left(r_{2}\right)\right] \\
& \begin{aligned}
\text { tating theneative sign } \\
\text { inside the brackees }
\end{aligned} \\
& \frac{Q}{2 \pi k L}\left[-\ln \left(r_{1}\right)+\ln \left(r_{2}\right)\right] \\
& =\frac{Q}{2 \pi k L}\left[\ln \left(r_{2}\right)-\ln \left(r_{1}\right)\right] \\
& =\frac{Q}{2 \pi k L} \underbrace{}_{\text {by }} \ln \left(\frac{r_{2}}{r_{1}}\right)
\end{aligned}
$$

Rearranging gives

$$
\frac{2 \pi k L\left(\theta_{1}-\theta_{2}\right)}{\ln \left(\frac{r_{2}}{r_{1}}\right)}=Q
$$

19. We have by rearranging:

$$
e^{11600 v / \eta T}=\frac{i}{I_{s}}+1
$$

Taking \ln 's of both sides gives:

$$
\begin{aligned}
& \frac{11600 v}{\eta T}=\ln \left(\frac{i}{I_{s}}+1\right) \\
& v=\frac{\eta T}{11600} \ln \left(\frac{i}{I_{s}}+1\right)\left(\text { Multiplying by } \frac{\eta T}{11600}\right)
\end{aligned}
$$

Substituting $\eta=2, i=5 \times 10^{-3}, I_{s}=0.1 \times 10^{-6}$ and $T=330$ gives

$$
\begin{aligned}
v & =\frac{2 \times 330}{11600} \times \ln \left(\left[\frac{5 \times 10^{-3}}{0.1 \times 10^{-6}}\right]+1\right) \\
& =0.62 \text { volts }
\end{aligned}
$$

$$
\begin{equation*}
\ln (A)-\ln (B)=\ln \left(\frac{A}{B}\right) \tag{5.12}
\end{equation*}
$$

