1. a) $\sum_{n=1}^{\infty} \sqrt{n}$
b) $\sum_{n=1}^{\infty}(2 n)$
c) $\sum_{n=1}^{\infty}(2 n-1)$
d) $\sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{n}\right]$
e) $\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}$
f) $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
2. Each of these is a geometric series with the common ratio r less than 1 so we can use the following formula to find the sum:

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{\text { First term }}{1-\text { Common ratio }} \tag{7.27}
\end{equation*}
$$

a) For the series $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$ the first term is $a=\frac{1}{3}$ because we start with index 1 , that is $\left(\frac{1}{3}\right)^{1}=\frac{1}{3}$. Common ratio $r=\frac{1}{3}$. Substituting these into the above formula (7.27) gives $\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}=\frac{1 / 3}{1-1 / 3}=\frac{1 / 3}{2 / 3}=\frac{1}{2} \quad\left[\begin{array}{l}\text { Multiplying numerator and } \\ \text { denominator by } 3\end{array}\right]$
b) Similarly for $\sum_{n=1}^{\infty}\left(\frac{1}{4}\right)^{n}$ we have $a=r=\frac{1}{4}$. Substituting these into the above formula

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{\text { First term }}{1-\text { Common ratio }} \tag{7.27}
\end{equation*}
$$

gives

$$
\sum_{n=1}^{\infty}\left(\frac{1}{4}\right)^{n}=\frac{1 / 4}{1-1 / 4}=\frac{1 / 4}{3 / 4}=\frac{1}{3} \quad\left[\begin{array}{l}
\text { Multiplying numerator and } \\
\text { denominator by } 4
\end{array}\right]
$$

c) Very similar to parts (a) and (b), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{1}{\pi}\right)^{n} & =\frac{\pi}{1-1 / \pi} \\
& =\frac{\pi}{(\pi-1) / \pi}=\frac{1}{\pi-1} \quad\left[\begin{array}{l}
\text { Multiplying numerator and } \\
\text { denominator by } \pi
\end{array}\right]
\end{aligned}
$$

d) This time we have $m>1$ therefore the common ratio $\frac{1}{m}<1$ so we can apply the above formula to find the sum of the infinite series:

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{1}{m}\right)^{n} & =\frac{1 / m}{1-\frac{1}{m}} \\
& =\frac{1 / m}{(m-1) / m}=\frac{1}{m-1} \quad\left[\begin{array}{l}
\text { Multiplying numerator and } \\
\text { denominator by } m
\end{array}\right]
\end{aligned}
$$

3. a) We have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{1}{2^{2 n-1}}\right) & =\frac{1}{2^{(2 \times 1)-1}}+\frac{1}{2^{(2 \times 2)-1}}+\frac{1}{2^{(2 \times 3)-1}}+\frac{1}{2^{(2 \times 4)-1}}+\cdots \\
& =\frac{1}{2^{1}}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\frac{1}{2^{7}}+\cdots
\end{aligned}
$$

What is the common ratio in this case?
Common ratio $r=\frac{1}{2^{2}}=\frac{1}{4}$ which is less than 1 so the series converges and we can use the formula

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{\text { First term }}{1-\text { Common ratio }} \tag{7.27}
\end{equation*}
$$

What is the first term a equal to?
$a=\frac{1}{2}$. Substituting $a=\frac{1}{2}$ and $r=\frac{1}{4}$ into the above formula (7.27) we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} & =\frac{1 / 2}{1-1 / 4} \\
& =\frac{1 / 2}{3 / 4}=\frac{2}{3} \quad\left[\begin{array}{l}
\text { Multiplying numerator and } \\
\text { denominator by } 4
\end{array}\right]
\end{aligned}
$$

b) Diverges because we are given $\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}$ which is

$$
\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}=\frac{3}{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{4}+\cdots
$$

What is the common ratio r equal to?

$$
r=\frac{3}{2} \text { which is greater than } 1
$$

Hence the series diverges.
c) Diverges because we have $\sum_{n=1}^{\infty}(e)^{n}$ and the common ratio

$$
r=e=2.71828 \cdots
$$

The common ratio is greater than 1 so the series diverges.
d) Does the given series $\sum_{n=1}^{\infty} 10\left(\frac{1}{3}\right)^{n}$ converge or not?

Writing out this series we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} 10\left(\frac{1}{3}\right)^{n}=10\left(\frac{1}{3}\right)^{1}+10\left(\frac{1}{3}\right)^{2}+10\left(\frac{1}{3}\right)^{3}+10\left(\frac{1}{3}\right)^{4}+\cdots \\
& \underset{\substack{\text { Taking outa } \\
\text { common tactor of } 10}}{=} 10\left[\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\cdots\right]
\end{aligned}
$$

The common ratio is $\frac{1}{3}$ which is less than 1 so the given series converges and

$$
\begin{aligned}
\sum_{n=1}^{\infty} 10\left(\frac{1}{3}\right)^{n} & =\frac{10 / 3}{1-1 / 3} \\
& =\frac{10 / 3}{2 / 3}=\frac{10}{2}=5
\end{aligned}
$$

4. The total distance D travelled by the ball is given by the infinite series:

$$
\begin{aligned}
D & =10+\underbrace{(10 \times 0.55)}_{\text {After first bounce }}+\underbrace{\left(10 \times 0.55^{2}\right)}_{\text {After second bounce }}+\underbrace{\left(10 \times 0.55^{3}\right)}_{\text {After third bounce }}+\cdots \\
& =\sum_{n=0}^{\infty} 10(0.55)^{n}
\end{aligned}
$$

How can we find D ?
D is a geometric series with first term $a=10$ and common ratio $r=0.55$. Since $|r|=0.55$ is less than 1 therefore the sum of this series is given by

$$
D=\frac{10}{1-0.55}=22.22 \mathrm{~m} \quad\left[\frac{\text { First term }}{1-(\text { Common ratio })}\right]
$$

Hence the total distance travelled by the ball is 22.22 m (2dp).
5. The maximum rise R of the balloon is given by:

$$
R=50+\underbrace{(50 \times 0.65)}_{\text {After second minute }}+\underbrace{\left(50 \times 0.65^{2}\right)}_{\text {After third minute }}+\underbrace{\left(50 \times 0.65^{3}\right)}_{\text {After fouth minute }}+\cdots=\sum_{n=0}^{\infty} 50(0.65)^{n}
$$

How can we find R ?
R is a geometric series with first term $a=50$ and common ratio $r=0.65$. Since $|r|=0.65$ is less than 1 therefore the sum of this series is given by

$$
D=\frac{50}{1-0.65}=142.86 \mathrm{~m} \quad\left[\frac{\text { First term }}{1-(\text { Common ratio })}\right]
$$

Hence the maximum rise by the balloon is 142.86 m (2dp).
6. We are given that the area removed is $A=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{n}$. Writing this out we have:

$$
A=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{n}=\frac{1}{4}+\frac{1}{4}\left(\frac{3}{4}\right)+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\cdots
$$

How can we find A ?
A is a geometric series with first term $a=\frac{1}{4}$ and common ratio $r=\frac{3}{4}$. Since $|r|$ is less than 1 therefore we can find the sum of this infinite series. We have

$$
A=\frac{1 / 4}{1-3 / 4}=1 \quad\left[\frac{\text { First term }}{1-(\text { Common ratio })}\right]
$$

$A=1$ means that the whole area is removed.
7. (a) Is $S=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots$ a geometric series?

Yes because each of term is $1 / 10$ of the previous term. What is the sum of this series? Since the common ratio $r=\frac{1}{10}$ which means that the modulus of this is less than 1 therefore the sum of the given infinite series is

$$
S=\frac{9 / 10}{1-1 / 10}=1 \quad\left[\frac{\text { First term }}{1-(\text { Common ratio })}\right]
$$

This means that $S=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots=0.999 \cdots=1$.
(b) Similarly we are given that $S=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\cdots$ which is a geometric series with the same common ratio of $r=\frac{1}{10}$ and first term $a=\frac{9}{10}$ which means we can find the sum of this infinite series.

$$
S=\frac{3 / 10}{1-1 / 10}=\frac{1}{3}
$$

As part (a) this means that $S=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\cdots=0.333 \cdots=\frac{1}{3}$.
(c) A carbon copy of the solutions presented in parts (a) and (b) gives that the sum of

$$
S=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots
$$

with $a=1 / 10, \quad r=1 / 10$ is

$$
S=\frac{1 / 10}{1-1 / 10}=\frac{1}{9}
$$

We conclude that this means $S=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots=0.111 \cdots=\frac{1}{9}$.
Parts (a), (b) and (c) show that $0.999 \cdots=1,0.333 \cdots=\frac{1}{3}$ and $0.111 \cdots=\frac{1}{9}$.
8. The total profit P is given by

$$
P=100+0.91(100)+0.91^{2}(100)+0.91^{3}(100)+\cdots
$$

This is a geometric series with first term $a=100$ and common ratio $r=0.91$. Since the common ratio is $|r|=|0.91|=0.91<1$ therefore the series converges. We have

$$
P=\frac{100}{1-0.91}=1111.11 \quad\left[\frac{\text { First term }}{1-(\text { Common ratio })}\right]
$$

The total possible profit is $£ 1111.11$ (2dp).
9. (a) We need to test the given series $8+4+2+1+\ldots$ for convergence. How can we write this series in compact form?

$$
\begin{aligned}
8+4+2+1+\ldots & =8+\frac{1}{2} 8+\left(\frac{1}{2}\right)^{2} 8+\left(\frac{1}{2}\right)^{3} 8+\cdots \\
& =8\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots\right) \\
& =8 \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

The series $8 \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$ is a geometric series. Does this series converge?
The common ratio is $\frac{1}{2}$ so the series converges and we use the formula

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{\text { First term }}{1-\text { Common ratio }} \tag{7.27}
\end{equation*}
$$

to find the sum of the infinite series. What is the first term in this case?
Clearly it is 8 . Hence substituting $a=8$ and $r=\frac{1}{2}$ into (7.27) gives

$$
8 \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{8}{1-1 / 2}=\frac{8}{1 / 2}=16
$$

The sum of the infinite series is 16 .
(b) The given series $3+6+12+24+\ldots$ diverges. Why?

By (7.25) we have $\lim _{n \rightarrow \infty}\left(a_{n}\right) \neq 0$ then $\sum\left(a_{n}\right)$ diverges. This means that if the nth term does not tend towards zero then the series diverges. Since our series $3+6+12+24+\ldots$ gets bigger so it diverges.
(c) For the given series $16+12+9+\frac{27}{4}+\ldots$ it is difficult to write down a formula in compact form. However we can divide two consecutive terms:

$$
\frac{12}{16}=\frac{9}{12}=\frac{27 / 4}{9}=\cdots=\frac{3}{4}
$$

This means we have a geometric series with a common ratio of $3 / 4$. The first term is 16 and so the sum of the infinite series is

$$
16+12+9+\frac{27}{4}+\ldots=\frac{\text { First term }}{1-\text { Common ratio }}=\frac{16}{1-3 / 4}=\frac{16}{1 / 4}=64
$$

10. (a) We are given the series:

$$
\sum_{n=1}^{\infty} \frac{1}{x^{n}}=\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}}+\cdots
$$

What is the common ratio r equal to?
$r=\frac{1}{x}$. Since $|x|>1$ which means that $|r|=\left|\frac{1}{x}\right|<1$ so the series converges and the sum is

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{x^{n}} & =\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}}+\cdots \\
& =\frac{\text { First term }}{1-\text { Common ratio }} \\
& =\frac{1 / x}{1-\frac{1}{x}}=\frac{1}{x-1} \quad\left[\begin{array}{l}
\text { Multiplying numerator } \\
\text { and denominator by } x
\end{array}\right]
\end{aligned}
$$

(b) We are given the series $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{x}{2}\right)^{n}=\frac{x}{2}+\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{2}\right)^{3}+\left(\frac{x}{2}\right)^{4}+\cdots$

We have $|x|<2$ therefore $|r|=\left|\frac{x}{2}\right|<1$ which means that the series converges. Using

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{\text { First term }}{1-\text { Common ratio }} \tag{7.27}
\end{equation*}
$$

we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{x}{2}\right)^{n} & =\frac{\text { First term }}{1-\text { Common ratio }} \\
& =\frac{x / 2}{1-\frac{x}{2}}=\frac{x}{2-x} \quad\left[\begin{array}{l}
\text { Multiplying numerator } \\
\text { and denominator by } 2
\end{array}\right]
\end{aligned}
$$

(c) Similarly we have

$$
\sum_{n=1}^{\infty} \frac{1}{(1+x)^{n}}=\frac{1}{1+x}+\frac{1}{(1+x)^{2}}+\frac{1}{(1+x)^{3}}+\frac{1}{(1+x)^{4}}+\cdots
$$

What is the common ratio r and first term a equal to in this case?

$$
r=a=\frac{1}{1+x}
$$

Since we are given that $x>0$ so $r=\frac{1}{1+x}<1$. Hence the series converges and

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(1+x)^{n}} & =\frac{\text { First term }}{1-\text { Common ratio }} \\
& =\frac{1 /(x+1)}{1-\frac{1}{x+1}}=\frac{1}{x} \quad\left[\begin{array}{l}
\text { Multiplying numerator } \\
\text { and denominator by } x+1
\end{array}\right]
\end{aligned}
$$

(d) The series given in this part is very similar to the one in part (c) above. We have

$$
\sum_{n=1}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n}}=\frac{1}{1+x^{2}}+\frac{1}{\left(1+x^{2}\right)^{2}}+\frac{1}{\left(1+x^{2}\right)^{3}}+\frac{1}{\left(1+x^{2}\right)^{4}}+\cdots
$$

Also $r=a=\frac{1}{1+x^{2}}$. We are give that $x \neq 0$ so $r=\frac{1}{1+x^{2}}<1$. Hence

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n}} & =\frac{a}{1-r} \\
& =\frac{1 /\left(1+x^{2}\right)}{1-\frac{1}{1+x^{2}}}=\frac{1}{x^{2}} \quad\left[\begin{array}{l}
\text { Multiplying numerator } \\
\text { and denominator by } 1+x^{2}
\end{array}\right]
\end{aligned}
$$

11. In many of these cases we apply the ratio test which is $\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)=L$. The series only converges if $L<1$.
(a) We are given $\sum\left(\frac{1}{(2 n)!}\right)$. This means that $a_{n}=\frac{1}{(2 n)!}$ and so the next term $n+1$ is

$$
a_{n+1}=\frac{1}{(2(n+1))!}=\frac{1}{(2 n+2)!}
$$

Substituting these $a_{n}=\frac{1}{(2 n)!}$ and $a_{n+1}=\frac{1}{(2 n+2)!}$ into $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$ gives

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{(2 n+2)!} \div \frac{1}{(2 n)!}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{(2 n+2)!} \times \frac{(2 n)!}{1}\right] \quad\left[\begin{array}{l}
\text { Inverting the second } \\
\text { fraction and multiplying }
\end{array}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{(2 n)!}{(2 n+2)!}\right]=\lim _{n \rightarrow \infty}\left[\frac{1}{(2 n+2)(2 n+1)}\right]=0
\end{aligned}
$$

Since $L=0$ the series converges.
(b) We need to evaluate L to test for convergence. For $\sum_{n=0}^{\infty}\left(\frac{n!}{2^{n}}\right)$ we have $a_{n}=\frac{n!}{2^{n}}$ and so $a_{n+1}=\frac{(n+1)!}{2^{n+1}}$. Substituting these into $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$ gives

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{2^{n+1}} \div \frac{n!}{2^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{2^{n+1}} \times \frac{2^{n}}{n!}\right)=\lim _{n \rightarrow \infty}\left(\frac{n+1}{2}\right)=\infty
\end{aligned}
$$

Since $L=+\infty$ the given series diverges.
(c) Very similar to part (b) with the 2 being replaced by 3 . We find that $L=+\infty$ so the given series diverges.
(d) We have the series $\sum\left(\frac{(n+1)^{2}}{2^{n}}\right)$ and we need to determine $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$. In this case $a_{n}=\frac{(n+1)^{2}}{2^{n}}$ and replacing n with $n+1$ yields $a_{n+1}=\frac{(n+2)^{2}}{2^{n+1}}$

$$
L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{(n+2)^{2}}{2^{n+1}} \div \frac{(n+1)^{2}}{2^{n}}\right]
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{(n+2)^{2}}{2^{n+1}} \times \frac{2^{n}}{(n+1)^{2}}\right] \quad\left[\begin{array}{l}
\text { Inverting the second } \\
\text { fraction and multiplying }
\end{array}\right]
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(\frac{n+2}{n+1}\right)^{2}\right]
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(\frac{n+1+1}{n+1}\right)^{2}\right]=\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(\frac{n+1}{n+1}+\frac{1}{n+1}\right)^{2}\right]=\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(1+\frac{1}{n+1}\right)^{2}\right]=\frac{1}{2}(1+0)^{2}=\frac{1}{2}
$$

Since $L=\frac{1}{2}<1$ the series converges.
(e) We are given the series $\sum\left(e^{-n}\right)$ which can be in written in expanded form as

$$
\begin{aligned}
\sum\left(e^{-n}\right) & =e^{-1}+e^{-2}+e^{-3}+e^{-4}+\cdots \\
& =\frac{1}{e}+\frac{1}{e^{2}}+\frac{1}{e^{3}}+\frac{1}{e^{4}}+\cdots
\end{aligned}
$$

This is a geometric series with $r=a=\frac{1}{e}=\frac{1}{2.71828 \cdots}$. Since $r<1$ so the series converges.
By using the ratio test we get $L=\frac{1}{e}$. (The sum is $\frac{1}{e-1}$.)
(f) We have $\sum\left(\frac{n^{2}}{3^{n}}\right)$. To use the ratio test we need to find a_{n} and a_{n+1}. What are these equal to?
$a_{n}=\frac{n^{2}}{3^{n}}$ and $a_{n+1}=\frac{(n+1)^{2}}{3^{n+1}}$. Putting these into $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$ gives

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{2}}{3^{n+1}} \div \frac{n^{2}}{3^{n}}\right] \quad\left[\begin{array}{l}
\text { Turning the second } \\
\text { fraction upside down }
\end{array}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{2}}{3^{n+1}} \times \frac{3^{n}}{n^{2}}\right] \quad \\
& \left.=\lim _{n \rightarrow \infty}\left[\frac{1}{3} \frac{(n+1)^{2}}{n^{2}}\right]=\lim _{n \rightarrow \infty}\left[\frac{1}{3}\left(\frac{n+1}{n}\right)^{2}\right]{\underset{\substack{\text { Dividing numerator } \\
\text { and denominator by } n}}{ } \lim _{n \rightarrow \infty}\left[\frac{1}{3}\left(\frac{1+1 / n}{1}\right)^{2}\right]=\frac{1}{3}}^{2}\right]
\end{aligned}
$$

Since $L=1$ / 3 which is less than 1 so the series converges.
(g) We need to test the series $\sum\left(\frac{10^{n}}{n!}\right)$ for convergence. How?

By using the ratio test. Let $a_{n}=\frac{10^{n}}{n!}$ then $a_{n+1}=\frac{10^{n+1}}{(n+1)!}$. We have

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{10^{n+1}}{(n+1)!} \div \frac{10^{n}}{n!}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{10^{n+1}}{(n+1)!} \times \frac{n!}{10^{n}}\right]=\lim _{n \rightarrow \infty}\left[\frac{10}{n+1}\right]=0
\end{aligned}
$$

Since L is less than 1 so the given series converges.
(h) Similarly for $\sum\left(\frac{3^{n} n}{(n+1)^{2}}\right)$ we use the ratio test. In this case $a_{n}=\frac{3^{n} n}{(n+1)^{2}}$ and $a_{n+1}=\frac{3^{n+1}(n+1)}{(n+2)^{2}}$. Putting these into $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$ gives

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3^{n+1}(n+1)}{(n+2)^{2}} \div \frac{3^{n} n}{(n+1)^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3^{n+1}(n+1)}{(n+2)^{2}} \times \frac{(n+1)^{2}}{3^{n} n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3(n+1)}{n} \times \frac{(n+1)^{2}}{(n+2)^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(3 \frac{(n+1)}{n} \times\left(\frac{n+1}{n+2}\right)^{2}\right) \\
& \vdots=\lim _{n \rightarrow \infty}\left(3 \frac{(1+1 / n)}{1} \times\left(\frac{1+1 / n}{1+2 / n}\right)^{2}\right)=\lim _{n \rightarrow \infty}\left(3(1) \times(1)^{2}\right)=3 \\
& \begin{array}{l}
\text { Dividing numerator } \\
\text { and denominator by } n
\end{array}
\end{aligned}
$$

We have $L=3$ therefore the series diverges.
(i) We are given $\sum\left(\frac{n!}{(2 n+1)!}\right)$. We have $a_{n}=\frac{n!}{(2 n+1)!}$ therefore

$$
a_{n+1}=\frac{(n+1)!}{(2(n+1)+1)!}=\frac{(n+1)!}{(2 n+3)!}
$$

Evaluating L we have

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{(2 n+3)!} \div \frac{n!}{(2 n+1)!}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{(2 n+3)!} \times \frac{(2 n+1)!}{n!}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{(2 n+3)(2 n+2)}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{4 n^{2}+10 n+6}\right) \underset{\substack{\text { Dividing numerator } \\
\text { and denominator by } n}}{=} \lim _{n \rightarrow \infty}\left(\frac{1+1 / n}{4 n+10+6 / n}\right)=0
\end{aligned}
$$

Since L is equal to zero so the series converges.
(j) We need to test $\sum\left(\frac{11^{n}}{2^{n+1} n}\right)$ for convergence. Let $a_{n}=\frac{11^{n}}{2^{n+1} n}$ then $a_{n+1}=\frac{11^{n+1}}{2^{n+2}(n+1)}$:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{11^{n+1}}{2^{n+2}(n+1)} \div \frac{11^{n}}{2^{n+1} n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{11^{n+1}}{2^{n+2}(n+1)} \times \frac{2^{n+1} n}{11^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{11}{2} \frac{n}{n+1}\right)_{\substack{\text { Dividing numerator } \\
\text { and denominator by } n}}^{=} \lim _{n \rightarrow \infty}\left(\frac{11}{2} \frac{1}{1+1 / n}\right)=\frac{11}{2}
\end{aligned}
$$

We have $L=\frac{11}{2}>1$ therefore the given series diverges.
12. In each case we show that $L=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)$ is equal to 1 .
(a) We are given the series $\sum\left(\frac{1}{n^{3}}\right)$ which means that $a_{n}=\frac{1}{n^{3}}$ and $a_{n+1}=\frac{1}{(n+1)^{3}}$:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{(n+1)^{3}} \times n^{3}\right] \\
& =\lim _{n \rightarrow \infty}\left[\left(\frac{n}{n+1}\right)^{3}\right] \underset{\substack{\text { Dividinin numerator } \\
\text { and denominator by } n}}{=} \lim _{n \rightarrow \infty}\left(\frac{1}{1+1 / n}\right)=\frac{1}{1+0}=1
\end{aligned}
$$

Hence the ratio test fails for this series.
(b) Similarly for $\sum\left(\frac{1}{n+10}\right)$ we find that $L=1$.
(c) For the given series $\sum\left(\frac{1}{n^{2}+1}\right)$ we have $a_{n}=\frac{1}{n^{2}+1}$ therefore $a_{n+1}=\frac{1}{(n+1)^{2}+1}$:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{(n+1)^{2}+1} \div\left(\frac{1}{n^{2}+1}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{(n+1)^{2}+1} \times\left(\frac{n^{2}+1}{1}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{n^{2}+2 n+1+1}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{n^{2}+2 n+2}\right) \underset{\begin{array}{c}
\text { Dividing numerator } \\
\text { and denominator by } n^{2}
\end{array}}{\overline{\lim _{n \rightarrow \infty}}\left(\frac{1+1 / n^{2}}{1+2 / n+2 / n^{2}}\right)=\frac{1+0}{1+0+0}=1}
\end{aligned}
$$

Since $L=1$ the ratio test fails.
13. (a) \mathbf{i} We are given $\sum\left(\frac{2^{n} n!}{n^{n}}\right)$. Let $a_{n}=\frac{2^{n} n!}{n^{n}}$ therefore $a_{n+1}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}$. We have

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \div \frac{2^{n} n!}{n^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \times \frac{n^{n}}{2^{n} n!}\right) \\
& =\lim _{n \rightarrow \infty}\left(2 \frac{n+1}{n+1}\left(\frac{n}{n+1}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(2\left(\frac{n}{n+1}\right)^{n}\right)=2 \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{2}{e}
\end{aligned}
$$

Since $L=\frac{2}{e}<1$ the given series converges.
ii Very similar to part i. We get $L=\frac{3}{e}>1$ so the series diverges.
(b) We have $\sum\left(\frac{x^{n} n!}{n^{n}}\right)$. Let $a_{n}=\frac{x^{n} n!}{n^{n}}$ therefore $a_{n+1}=\frac{x^{n+1}(n+1)!}{(n+1)^{n+1}}$. Determining L :

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{x^{n+1}(n+1)!}{(n+1)^{n+1}} \div \frac{x^{n} n!}{n^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{x^{n+1}(n+1)!}{(n+1)^{n+1}} \times \frac{n^{n}}{x^{n} n!}\right) \\
& =\lim _{n \rightarrow \infty}\left(x \frac{n+1}{n+1}\left(\frac{n}{n+1}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(x\left(\frac{n}{n+1}\right)^{n}\right)=x \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{x}{e}
\end{aligned}
$$

Remember the series converges if L is less than 1 . We have
(i) $0<x<e$
(ii) $x>e$

