Cheat Sheet: A Course in Behavioral Economics, 3rd Ed.

(C) Erik Angner

28 June 2021

This quick-reference sheet - or "cheat sheet" - accompanies Erik Angner's A Course in Behavioral Economics, 3rd Ed. (London: Red Globe Press, 2021).

Chapter 2

Axiom 2.5 (Transitivity of weak preference) If $x \succcurlyeq y$ and $y \succcurlyeq z$, then $x \succcurlyeq z$ (for all x, y, z).
Axiom 2.6 (Completeness of weak preference) Either $x \succcurlyeq y$ or $y \succcurlyeq x$ (or both) (for all x, y).
Definition 2.11 (Indifference) $x \sim y$ if and only if $x \succcurlyeq y$ and $y \succcurlyeq x$.
Definition 2.16 (Strict preference) $x \succ y$ if and only if $x \succcurlyeq y$ and it is not the case that $y \succcurlyeq x$.
Definition 2.32 (Utility function) A function $u(\cdot)$ from the set of alternatives into the set of real numbers is a utility function representing preference relation \succcurlyeq just in case $x \succcurlyeq y \Leftrightarrow u(x) \geqslant u(y)$ (for all x, y).

How to do proofs

Hint one: To establish a proposition of the form $x \rightarrow y$, assume what is to the left of the arrow (x) and derive what is to the right (y). If you want to establish a proposition of the form $x \leftrightarrow y$, do it both ways. Hint two: If you want to establish a proposition of the form $\neg p$, assume the opposite of what you want to prove (p) and derive a contradiction.

Chapter 3

Definition 3.2 (Opportunity cost) $c\left(a_{i}\right)=\max \left\{u\left(a_{1}\right), u\left(a_{2}\right), \ldots, u\left(a_{i-1}\right), u\left(a_{i+1}\right), \ldots, u\left(a_{n}\right)\right\}$.
Proposition 3.25 (Expansion condition) If x is chosen from the menu $\{x, y\}$, assuming that you are not indifferent between x and y, you must not choose y from the menu $\{x, y, z\}$.

Chapter 4

Axiom 4.6 (Range of probabilities) $0 \leqslant \operatorname{Pr}(A) \leqslant 1$.
Axiom 4.7 (The EQUIPROBABILITY rule) If the outcome space $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ consists of n equally probable individual outcomes, then $\operatorname{Pr}\left(A_{i}\right)=1 / n$ (for all i).

Axiom 4.15 (The or rule) If A and B are mutually exclusive, then $\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.
Axiom 4.18 (The everything rule) The probability of the entire outcome space is equal to one.
Axiom 4.19 (The not rule) $\operatorname{Pr}(\neg A)=1-\operatorname{Pr}(A)$.

[^0]Axiom 4.19 (The and rule) If A and B are independent, then $\operatorname{Pr}(A \& B)=\operatorname{Pr}(A) * \operatorname{Pr}(B)$.
Definition 4.32 (Conditional probability) $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \& B) / \operatorname{Pr}(B)$.
Proposition 4.34 (The general and rule) $\operatorname{Pr}(A \& B)=\operatorname{Pr}(A \mid B) * \operatorname{Pr}(B)$.
Proposition 4.39 (The rule of total probability) $\operatorname{Pr}(D)=\operatorname{Pr}(D \mid B) * \operatorname{Pr}(B)+\operatorname{Pr}(D \mid \neg B) * \operatorname{Pr}(\neg B)$.
Proposition 4.42 (Bayes's rule)

$$
\operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(D \mid B) * \operatorname{Pr}(B)}{\operatorname{Pr}(D)}=\frac{\operatorname{Pr}(D \mid B) * \operatorname{Pr}(B)}{\operatorname{Pr}(D \mid B) * \operatorname{Pr}(B)+\operatorname{Pr}(D \mid \neg B) * \operatorname{Pr}(\neg B)} .
$$

The heuristics-and-biases program

Heuristics are functional but imperfect rules of thumb that can be used when forming judgments:

- The anchoring-and-adjustment heuristic instructs you to pick an initial estimate (anchor) and adjust the initial estimate up or down (as you see fit) in order to come up with a final answer.
- The representativeness heuristic tells you to estimate the probability that some outcome was the result of a given process by reference to the degree to which the outcome is representative of that process.
- The availability heuristic makes you assess the probability that some event will occur based on the ease with which the event comes to mind.
- The affect heuristic gets you to assign probabilities to consequences based on how you feel about the thing they would be consequences of: the better you feel about it, the higher the probability of good consequences and the lower the probability of bad.

Because the heuristics are imperfect, they can lead to bias: systematic and predictable error.

Chapter 6

Definition 6.9 (Expected value)

$$
E V\left(A_{i}\right)=\operatorname{Pr}\left(S_{1}\right) * C_{i 1}+\operatorname{Pr}\left(S_{2}\right) * C_{i 2}+\ldots+\operatorname{Pr}\left(S_{n}\right) * C_{i n}=\sum_{j=1}^{n} \operatorname{Pr}\left(S_{j}\right) C_{i j}
$$

Definition 6.21 (Expected utility)

$$
E U\left(A_{i}\right)=\operatorname{Pr}\left(S_{1}\right) * u\left(C_{i 1}\right)+\operatorname{Pr}\left(S_{2}\right) * u\left(C_{i 2}\right)+\ldots+\operatorname{Pr}\left(S_{n}\right) * u\left(C_{i n}\right)=\sum_{j=1}^{n} \operatorname{Pr}\left(S_{j}\right) u\left(C_{i j}\right) .
$$

Chapter 7

Definition 7.30 (Value)

$$
V\left(A_{i}\right)=\pi\left[\operatorname{Pr}\left(S_{1}\right)\right] * v\left(C_{i 1}\right)+\pi\left[\operatorname{Pr}\left(S_{2}\right)\right] * v\left(C_{i 2}\right)+\ldots+\pi\left[\operatorname{Pr}\left(S_{n}\right)\right] * v\left(C_{i n}\right)=\sum_{j=1}^{n} \pi\left[\operatorname{Pr}\left(S_{j}\right)\right] v\left(C_{i j}\right)
$$

Prospect theory

The central components of prospect theory are the value function (Figure 7.2) and the probability weighting function (Figure 7.6).

Figure 7.2: The value function

Figure 7.6: The probability-weighting function $\pi(\cdot)$

Chapter 8

Definition 8.10 (The delta function)

$$
U^{0}(\mathbf{u})=u_{0}+\delta u_{1}+\delta^{2} u_{2}+\delta^{3} u_{3}+\ldots=u_{0}+\sum_{i=1}^{\infty} \delta^{i} u_{i} .
$$

Discount factors vs. discount rates

To convert a discount factor δ into a discount rate r, or vice versa, apply one of the following formulas:

$$
r=\frac{1-\delta}{\delta} \quad \delta=\frac{1}{1+r}
$$

Chapter 9

Definition 9.1 (The beta-delta function)

$$
U^{0}(\mathbf{u})=u_{0}+\beta \delta u_{1}+\beta \delta^{2} u_{2}+\beta \delta^{3} u_{3}+\ldots=u_{o}+\sum_{i=1}^{\infty} \beta \delta^{i} u_{i} .
$$

Chapter 11

Social preferences

Preferences	Example functional form
Altruistic	$u(x, y)=3 / 5 \sqrt{x}+2 / 5 \sqrt{y}$
Envious	$u(x, y)=\sqrt{x}-\sqrt{y}$
Rawlsian	$u(x, y)=\min (\sqrt{x}, \sqrt{y})$
Inequality-averse	$u(x, y)=-\|\sqrt{x}-\sqrt{y}\|$
Utilitarian	$u(x, y)=\sqrt{x}+\sqrt{y}$

[^0]: *Dept. of Philosophy, Stockholm University. Email: erik.angner@philosophy.su.se

