Cheat Sheet: A Course in Behavioral Economics, 3rd Ed.

© Erik Angner^{*}

28 June 2021

This quick-reference sheet – or "cheat sheet" – accompanies Erik Angner's A Course in Behavioral Economics, 3rd Ed. (London: Red Globe Press, 2021).

Chapter 2

Axiom 2.5 (Transitivity of weak preference) If $x \succeq y$ and $y \succeq z$, then $x \succeq z$ (for all x, y, z).

Axiom 2.6 (Completeness of weak preference) Either $x \succcurlyeq y$ or $y \succcurlyeq x$ (or both) (for all x, y).

Definition 2.11 (Indifference) $x \sim y$ if and only if $x \succeq y$ and $y \succeq x$.

- **Definition 2.16 (Strict preference)** $x \succ y$ if and only if $x \succcurlyeq y$ and it is not the case that $y \succcurlyeq x$.
- **Definition 2.32 (Utility function)** A function $u(\cdot)$ from the set of alternatives into the set of real numbers is a utility function representing preference relation \succeq just in case $x \succeq y \Leftrightarrow u(x) \ge u(y)$ (for all x, y).

How to do proofs

Hint one: To establish a proposition of the form $x \to y$, assume what is to the left of the arrow (x) and derive what is to the right (y). If you want to establish a proposition of the form $x \leftrightarrow y$, do it both ways. **Hint two**: If you want to establish a proposition of the form $\neg p$, assume the opposite of what you want to prove (p) and derive a contradiction.

Chapter 3

Definition 3.2 (Opportunity cost) $c(a_i) = \max \{ u(a_1), u(a_2), \dots, u(a_{i-1}), u(a_{i+1}), \dots, u(a_n) \}.$

Proposition 3.25 (Expansion condition) If x is chosen from the menu $\{x, y\}$, assuming that you are not indifferent between x and y, you must not choose y from the menu $\{x, y, z\}$.

Chapter 4

Axiom 4.6 (Range of probabilities) $0 \leq \Pr(A) \leq 1$.

Axiom 4.7 (The EQUIPROBABILITY rule) If the outcome space $\{A_1, A_2, \ldots, A_n\}$ consists of *n* equally probable individual outcomes, then $\Pr(A_i) = 1/n$ (for all *i*).

Axiom 4.15 (The OR rule) If A and B are mutually exclusive, then $\Pr(A \lor B) = \Pr(A) + \Pr(B)$.

Axiom 4.18 (The EVERYTHING rule) The probability of the entire outcome space is equal to one.

Axiom 4.19 (The NOT rule) $\Pr(\neg A) = 1 - \Pr(A)$.

^{*}Dept. of Philosophy, Stockholm University. Email: erik.angner@philosophy.su.se

Axiom 4.19 (The AND rule) If A and B are independent, then Pr(A&B) = Pr(A) * Pr(B). Definition 4.32 (Conditional probability) Pr(A | B) = Pr(A&B) / Pr(B). Proposition 4.34 (The general AND rule) Pr(A&B) = Pr(A | B) * Pr(B).

Proposition 4.39 (The rule of total probability) $Pr(D) = Pr(D | B)*Pr(B)+Pr(D | \neg B)*Pr(\neg B).$

Proposition 4.42 (Bayes's rule)

$$\Pr\left(B \mid D\right) = \frac{\Pr\left(D \mid B\right) * \Pr\left(B\right)}{\Pr\left(D\right)} = \frac{\Pr\left(D \mid B\right) * \Pr\left(B\right)}{\Pr\left(D \mid B\right) * \Pr\left(B\right) + \Pr\left(D \mid \neg B\right) * \Pr\left(\neg B\right)}$$

The heuristics-and-biases program

Heuristics are functional but imperfect rules of thumb that can be used when forming judgments:

- The **anchoring-and-adjustment** heuristic instructs you to pick an initial estimate (anchor) and adjust the initial estimate up or down (as you see fit) in order to come up with a final answer.
- The **representativeness** heuristic tells you to estimate the probability that some outcome was the result of a given process by reference to the degree to which the outcome is representative of that process.
- The **availability heuristic** makes you assess the probability that some event will occur based on the ease with which the event comes to mind.
- The **affect heuristic** gets you to assign probabilities to consequences based on how you feel about the thing they would be consequences of: the better you feel about it, the higher the probability of good consequences and the lower the probability of bad.

Because the heuristics are imperfect, they can lead to bias: systematic and predictable error.

Chapter 6

Definition 6.9 (Expected value)

$$EV(A_i) = \Pr(S_1) * C_{i1} + \Pr(S_2) * C_{i2} + \dots + \Pr(S_n) * C_{in} = \sum_{j=1}^{n} \Pr(S_j) C_{ij}$$

Definition 6.21 (Expected utility)

$$EU(A_i) = \Pr(S_1) * u(C_{i1}) + \Pr(S_2) * u(C_{i2}) + \ldots + \Pr(S_n) * u(C_{in}) = \sum_{j=1}^{n} \Pr(S_j) u(C_{ij}).$$

Chapter 7

Definition 7.30 (Value)

$$V(A_{i}) = \pi \left[\Pr(S_{1}) \right] * v(C_{i1}) + \pi \left[\Pr(S_{2}) \right] * v(C_{i2}) + \ldots + \pi \left[\Pr(S_{n}) \right] * v(C_{in}) = \sum_{j=1}^{n} \pi \left[\Pr(S_{j}) \right] v(C_{ij}).$$

Prospect theory

The central components of prospect theory are the value function (Figure 7.2) and the probability weighting function (Figure 7.6).

Chapter 8

Definition 8.10 (The delta function)

$$U^{0}(\mathbf{u}) = u_{0} + \delta u_{1} + \delta^{2} u_{2} + \delta^{3} u_{3} + \ldots = u_{0} + \sum_{i=1}^{\infty} \delta^{i} u_{i}.$$

Discount factors vs. discount rates

To convert a discount factor δ into a discount rate r, or vice versa, apply one of the following formulas:

$$r = \frac{1-\delta}{\delta} \quad \delta = \frac{1}{1+r}$$

Chapter 9

Definition 9.1 (The beta-delta function)

$$U^{0}(\mathbf{u}) = u_{0} + \beta \delta u_{1} + \beta \delta^{2} u_{2} + \beta \delta^{3} u_{3} + \ldots = u_{o} + \sum_{i=1}^{\infty} \beta \delta^{i} u_{i}.$$

Chapter 11

Social preferences

Preferences	Example functional form
Altruistic	$u\left(x,y\right) = \frac{3}{5\sqrt{x}} + \frac{2}{5\sqrt{y}}$
Envious	$u\left(x,y\right) = \sqrt{x} - \sqrt{y}$
Rawlsian	$u(x,y) = \min\left(\sqrt{x},\sqrt{y}\right)$
Inequality-averse	$u(x,y) = -\left \sqrt{x} - \sqrt{y}\right ^{\prime}$
Utilitarian	$u\left(x,y\right) = \sqrt{x} + \sqrt{y}$