Chapter 6 - Rules of deductive inference
Answers to select "Getting familiar with..." exercises.
Getting familiar with... basic rules of inference.
1.

1. A
2. $(A \supset B) \quad 1 .: B$
3. B 1, 2 modus ponens
4.
5. (P \& Q)
6. (R \& S) 1.: P
7. $P 1$ simplification
8.
9. ((R v S) \& Q)
10. ($\sim \mathrm{Q} v \mathrm{~S})$
11. $T \quad 1:$ (Q \& T)
12. $Q 1$ simplification
13. (Q \& T) 3, 4 conjunction
14.
15. $((A \supset B) \supset(C \vee D))$
16. ~ $(C \supset D) \quad 1 .: \sim(A \supset B)$
17. $\sim(A \supset B)$ 1, 2 modus tollens
18.
19. $((P \supset Q) \&(S \supset R))$
20. ($\sim \mathrm{Q} \& \sim \mathrm{R}) \quad 1 .:(\sim \mathrm{P} \& \sim \mathrm{~S})$
21. $(P \supset Q) 1$ simplification
22. ~Q 2 simplification
23. ~P 3, 4 modus tollens
24. ($\mathrm{S} \supset \mathrm{R}$) 1 simplification
25. $\sim R \quad 2$ simplification
26. ~S 5,6 modus tollens
27. ($\sim P \& \sim S$) 5, 8 conjunction
28.
29. ((P \& Q) \& W)
30. $\mathrm{R} \quad / .: \mathrm{W}$
31. W 1 simplification
32.
33. A
34. $(B \vee C)$
35. $((\mathrm{A} \&(\mathrm{~B} \vee \mathrm{C})) \supset \mathrm{D}) \quad$ /: D
36. (A \& (B v C)) 1, 3 conjunction
37. D 3, 4 modus ponens
38.
39. ((P $\vee \mathrm{Q}) \supset(\mathrm{W} \& \sim Y))$
40. ($\sim \mathrm{Q} \& \mathrm{~W})$
41. $(\mathrm{X} \supset \mathrm{Y})$
42. $(\mathrm{P} \vee \mathrm{Q}) \quad$.: $(\sim \mathrm{X} \& \sim \mathrm{Q})$
43. ($\sim W \& \sim Y) \quad 1,4$ modus ponens
44. $\sim Y \quad 5$ simplification
45. $\sim X \quad 3,6$ modus tollens
46. $\sim Q \quad 2$ simplification
47. (\sim X ~Q) 7, 8 conjunction
48.
49. $\sim P$
50. $(S \supset R)$
51. $(R \supset Q)$
52. $(Q \supset P) \quad 1 .: \sim S$
53. $\sim Q \quad$ 1, 4 modus tollens
54. $\sim R \quad 3,5$ modus tollens
55. ~S 2, 6 modus tollens
56.
57. $\sim(B \vee D)$
58. $(A \supset(B \vee D))$
59. $(H \supset((E \& F) \& G))$
60. $\mathrm{H} \quad$ l.: (~A \& E)
61. $\sim A \quad 1,2$ modus tollens
62. ((E \& F) \& G) 3, 4 modus ponens
63. (E \& F) 6 simplification
64. E

7 simplification
9. ($\sim A$ \&) 5, 8 conjunction

Getting familiar with... more rules of inference.
a.
1.

1. $((A \vee B) \supset C)$
2. ($F \& D$)
3. $(C \supset(E \vee H)) / .:((A \vee B) \supset(E \vee H))$
4. ((A v B) $\supset(E \vee H)) 1,3$ hypothetical syllogism
5.
6. $(\sim P \vee(D \vee Z))$
7. $(\sim(D \vee Z) \vee B)$
8. ~ B \quad.: ~P
9. ~(D v Z) 2, 3 hypothetical syllogism
10. ~P 1, 4 hypothetical syllogism
11.
12. ((P $\vee Q) \vee(\sim R \vee \sim S))$
13. $\sim(P \vee Q)$
14. $\sim \sim S \quad$ /: $\sim R$
15. (~R v ~S) 1, 2 hypothetical syllogism
16. ~R 3, 4 hypothetical syllogism
17.
18. (((P $\vee \mathrm{Q}) \&(\mathrm{R} \& \mathrm{~S})) \&(\mathrm{~T} \vee \mathrm{U}))$
19. $(\mathrm{A} \& \mathrm{~B}) \quad 1 .:(\mathrm{B} \vee \mathrm{P})$
20. $B \quad 2$ simplification
21. (B v P) 3 addition
22.
23. A
24. $((A \vee B) \supset \sim C)$
25. $(\sim C \supset F) \quad 1 .:((A \vee B) \supset F)$
26. ((A v B) $\supset F) \quad$ 2, 3 hypothetical syllogism
b.
27.
28. ($\sim \mathrm{S} \supset \mathrm{Q}$)
29. $(R \supset \sim T)$

3. $(\sim S \vee R) \quad$.: $(Q \vee \sim T)$	
4. $(Q \vee \sim T)$	$1-3$ constructive dilemma

13.
14. ($(\mathrm{H} \supset \mathrm{B}) \&(\mathrm{O} \supset \mathrm{C}))$
15. ($\mathrm{Q} \supset(\mathrm{H} v \mathrm{O})$)
16. Q / ... (BvC)
17. (H v O) 2, 3 modus ponens
18. $(\mathrm{H} \supset \mathrm{B}) 1$ simplification
19. $(\mathrm{O} \supset \mathrm{C}) 1$ simplification
20. (B v C) 4-6 constructive dilemma
21.
22. $(B \supset(A \vee C))$
23. $(\mathrm{B} \& \sim \mathrm{~A}) \quad 1 .: \mathrm{C}$
24. $B \quad 2$ simplification
25. $\sim A \quad 2$ simplification
26. (A v C) 1, 3 modus ponens
27. C 4,5 disjunctive syllogism
28.
29. ($(A \& B) \supset \sim C)$
30. ($\mathrm{C} \vee \sim \mathrm{D}$)
31. $(A \supset B)$
32. (E \& A) $\quad 1 .: \sim D$
33. A 4 simplification
34. B 3,5 modus ponens
35. (A \& B) 5, 6 conjunction
36. $\sim \mathrm{C} \quad$ 1,7 modus ponens
37. ~D 2, 8 disjunctive syllogism
38.
39. ($\mathrm{F} \supset(\mathrm{G} \supset \sim H))$
40. ((F \& ~W) $\supset(G \vee T))$
41. $(F \& \sim T)$
42. $(\mathrm{W} \supset \mathrm{T}) \quad$ l.: ~H
43. F 3 simplification
44. ~T 3 simplification
45. ~W 4, 6 modus tollens
46. (F \& ~W) 5, 7 conjunction
47. ($\mathrm{G} v \mathrm{~T}$) 2, 8 modus ponens
48. $G \quad 6,9$ disjunctive syllogism
49. ($G \supset \sim H$) 1, 5 modus ponens
50. $\sim \mathrm{H} \quad 10,11$ modus ponens

Getting familiar with... rules of replacement.
1.

1. $(\sim(P \equiv R) \vee \sim(Q \& S))$
2. $\sim((P \equiv R) \&(Q \& S))$

DeMorgan's Law

3.
4. $\sim \sim(A \& B) \vee(Q \supset R)$
5. $(A \& B) \vee(Q \supset R)$

Double Negation

5.
6. $((P \& Q) \supset R)$
7. $\sim R \supset \sim(P \& Q)$

Transposition
7.

1. (R \& Z)
2. $(R \& Z) v(R \& Z)$

Tautology
9.

1. $(Q \vee(R \& S))$
2. $((Q \vee R) \&(Q \vee S))$

Distribution

Getting familiar with... proofs.
1.

1. $((A \vee B) \supset C)$
2. ($F \& D$)
3. A
4. $(C \supset(E \vee H)) \quad$ /.: $((A \vee B) \supset(E \vee H))$
5. (A v B) assumption for conditional proof
6. $\mathrm{C} \quad 1,5$
7. (E v H) 4, 6 modus ponens
8. ((A v B) כ (E v H)) 5-8 conditional proof
9.
10. $(\sim P \vee D)$
11. (~D \& B)
12. $((Z \supset P) \& A) \quad / .:(\sim Z \& A)$
13. $\sim(\sim Z \& A) \quad$ assumption for indirect proof
14. (~~Z v ~A) 4 DeMorgan's Law
15. ($\mathrm{Z} v \sim \mathrm{~A}) \quad 5$ double negation
16. A 3 simplification
17. $\sim \sim A \quad 7$ double negation
18. $Z \quad$ 6, 8 disjunctive syllogism
19. ($Z \supset P$) 3 simplification
20. $P \quad 9,10$ modus ponens
21. ~~P 11 double negation
22. D 1, 12 disjunctive syllogism
23. ~D 2 simplification
24. (D \& ~D) 13, 14 conjunction
25. ($\sim Z \& A) \quad 4-15$ indirect proof
26.
27. $((A \vee B) \vee(\sim C \vee \sim D))$
28. $\sim(A \vee B)$

29. C assumption for indirect proof
30. ($\sim \mathrm{C} v \sim \mathrm{D})$ 1, 2 disjunctive syllogism
31. $\sim \sim C \quad 4$ double negation
32. ~D 5, 6 disjunctive syllogism
33. D 3 double negation
34. (D \& ~D) 7, 8 conjunction
35. $\sim C$ 4-9 indirect proof
36.
37. $(((\mathrm{M} \vee \mathrm{N}) \&(\mathrm{O} \& P)) \&(\mathrm{Q} \vee \mathrm{R}))$
38. $(\mathrm{A} \& \mathrm{~B}) \quad 1 .:(\mathrm{P} \& \mathrm{~B})$

3.	$\sim(\mathrm{P} \& \mathrm{~B})$	assumption for indirect proof
4.	$(\sim \mathrm{P} v \sim \mathrm{~B})$	3 DeMorgan's Law
5.	B	2 simplification
6.	$\sim \sim \mathrm{B}$	5 double negation
7.	$\sim \mathrm{P}$	4,6 disjunctive syllogism
8.	$((\mathrm{M} v \mathrm{~N}) \&(\mathrm{O} \& \mathrm{P}))$	1 simplification
9.	$(\mathrm{O} \& \mathrm{P})$	8 simplification
10.	P	9 simplification
11.	$(\mathrm{P} \& \sim \mathrm{P})$	7,10 conjunction
12.	$(\mathrm{P} \& \mathrm{~B})$	$3-11$ indirect proof

9.
10. A
11. $((A \vee B) \supset \sim C)$
12. $(\mathrm{D} \supset \sim \sim C) \quad /:: D$
13. D assumption for indirect proof
14. ~~C 3, 4 modus ponens
15. $\sim(A \vee B) \quad 2,5$ modus tollens
16. ($\sim A$ \& $\sim B) 6$ DeMorgan's Law
17. $\sim A \quad 7$ simplification
18. (A \& ~A) 1, 8 conjunction
19. ~D 4-9 indirect proof
20.
21. B
22. ($(B \vee D) \supset \sim H)$
23. $(H \vee F) \quad /:(C \supset F)$
24. C assumption for conditional proof
25. (B v D) 1 addition
26. $\sim \mathrm{H} \quad$ 2,5 modus ponens
27. $F \quad$ 3, 6 disjunctive syllogism
28. ($C \supset F$) 4-7 conditional proof
29.
30. $((\mathrm{M} \supset \mathrm{O}) \vee \mathrm{S})$
31. (($\sim S$ \& $) \& M)$
32. M
33. ($\mathrm{P} \& \sim \mathrm{O}) \quad / .:(\mathrm{S}$ v B)
34. $\quad \sim(S v B) \quad$ assumption for indirect proof
35. $\sim 0 \quad 4$ simplification
36. (~S \& N) 2 simplification
37. ~S 7 simplification
38. $(M \supset 0) \quad 1,8$ disjunctive syllogism
39. $0 \quad 3,9$ modus ponens
40. (O \& ~O) 6, 10 conjunction
41. (S v B) 5-11 indirect proof
42.
43. $(\mathrm{X} \vee \mathrm{Y})$
44. $((X \& W) \supset(Z \supset Y))$
45. (~Y \& W)
46. $\mathrm{Z} \quad / .: \mathrm{R}$
47. $\quad \sim \mathrm{R} \quad$ assumption for indirect proof
48. $\sim \mathrm{Y} \quad 3$ simplification
49. $X \quad 1,6$ disjunctive syllogism
50. W 3 simplification
51. ($\mathrm{X} \& \mathrm{~W}$) 7, 8 conjunction
52. $(Z \supset Y)$ 2, 9 modus ponens
53. $Y \quad 4,10$ modus ponens
54. $(Y$ \& ~ Y) 6, 11 conjunction
55. $R \quad 5-12$ indirect proof
56. Alternative ending
57. $\sim Z \quad 6,10$ modus tollens
58. ($Z \& \sim Z$) 4, 11 conjunction
59. $R \quad 5-12$ conditional proof
60.
61. X
62. ((\sim v Y) v Z)
63. (\sim Z \& ~~S) $/ .:(\mathrm{W} \supset(\mathrm{Y} \vee \mathrm{R}))$
64. $\mathrm{W} \quad$ assumption for conditional proof
65. $\sim Z \quad 3$ simplification
66. ($\sim S v Y) \quad 2,5$ disjunctive syllogism
67. ~~S

3 simplification
8. $Y \quad$ 6, 7 disjunctive syllogism
9. (Y v R) 8 addition
10. ($\mathrm{W} \supset(\mathrm{Y} \vee \mathrm{R})$) 4-9 conditional proof
19.

1. $(A \supset(\sim A \vee F))$
2. $\sim F \quad / .: \sim A$
3. A assumption for indirect proof
4. ($\sim A v F) 1,3$ modus ponens
5. ~A 2, 4 disjunctive syllogism
6. (A \& ~A) 3, 5 conjunction
7. $\sim A$ 3-6 indirect proof

Getting familiar with... formal fallacies.
a.
1.

1. He's the president of the company or I'm a monkey's uncle.
2. Here is the memo announcing that he is president.
3. So, I'm obviously not a monkey's uncle.

Affirming the disjunct

3.

1. It is either raining or storming.
2. It is certainly raining.
3. Thus, it is not storming.

Affirming the disjunct

5.
6. If it drops below $0^{\circ} \mathrm{C}$, either the roads will become icy or the water line will freeze.
7. It is $-5^{\circ} \mathrm{C}$ (below 0°).
8. So, either the roads will become icy or the water line will freeze.
9. The roads are icy.
10. Therefore, the water line is probably not frozen.

Affirming the disjunct

b.

1. Affirming the disjunct
2. Either the Bulls will win or the Suns will.
3. The Bulls will win.
4. So, the Suns will not win.

If you're worried that this inference is a good one because only one team can win, remember that if only one team could win, then the teams are playing each other and the "or" is exclusive. But we cannot assume the "or" is exclusive unless it is explicitly stated. In this case, the team could be playing different teams or in different tournaments.

3. Affirming the consequent

1. If the road is wet, your tires won't have as much traction.
2. You won't have as much traction.
3. Therefore, the road is wet.

Why is this fallacious? Because the road's being wet is one reason you won't have good traction, but it is certainly not the only reason. There may be ice on the road, or your tires may be bald.

5. Denying the antecedent

1. If the bar is close, it will be safe to drive home.
2. The bar is not close.
3. So, it won't be safe to drive home.

This is fallacious because, even thought the bar's proximity is one reason it will be safe to drive home, there may be others. For instance, the driver is not drunk, the roads are not slippery, it is not late at night, etc.

7. Affirming the consequent

1. We will win only if we strengthen our defense.
2. We have strengthened our defense.
3. Therefore, we will win.

Strengthening the defense may be a necessary condition for winning, but it is certainly not sufficient. You still have to play the game, your team members have to be in good shape, you have to outplay the other team, etc.

9. Affirming the disjunct

1. They will break up unless she is honest.
2. She is honest.
3. Therefore, they will not break up.

Notice how the inclusive "or" helps us here. They could break up for a number of reasons. If she is not honest, they will break up. That would be the valid conclusion of a disjunctive syllogism. But if she is honest, who knows what will happen? They may break up anyway, perhaps she was too honest; perhaps what she was honest about is a reason to break up. Maybe being honest increases the chances they will stay together, but it doesn't guarantee it.

