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    Chapter synopsis    

 In this chapter, we compare two different methods used to describe the learning 

outcomes of students, learning objectives, including taxonomies and 

competencies. Traditionally, learning outcomes were described and monitored by the 

acquisition of certain knowledge elements or by the achievement of predefi ned learning 

objectives. During the last decade, mainly stimulated by the surprising results of the 

Programme for International Student Assessment ( PISA ) studies, the focus of the outcomes 

of school education has shifted – in some countries – towards target competencies. 

Competencies describe which ‘real- world’ problems or tasks students should be able to 

solve. Item response theory can be used in preference to classical testing approaches to 

assess competencies. Finally, the development of educational standards for regional or 

national assessment is described. To assure quality, such standards have to be based on 

properly defi ned competency models.   
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   16.1 Introduction  

 In Chapter 11 we read about some techniques that an individual teacher can use to formatively assess 

progress in computer science. Th e question remains, how do we measure the learning summatively in 

a rigorous way? Th is relates not just to individual students and their progress, but to whole cohorts or 

even countries of students. Where we may use informal measures such as the average score on a test 

to measure the progress of our students, more rigorous methods can give us more accurate information. 

Th ey also provide an alignment between educational goals and the instruction provided. Th is chapter 

addresses this issue by considering the current trend from learning outcomes to competencies, along 

with some statistical methods that are used to ensure accuracy and objectivity of this measurement. 

 Learning outcomes are assessed for many diff erent purposes. For example, an individual teacher 

may want to assess his/her students to get feedback about the eff ectiveness of his/her lessons or to 

confer a certain qualifi cation. Such an assessment could be performed either by a written or online 

test or by oral examinations. In these cases, one single teacher will examine a certain number of 

students that could range from one in the oral case up to hundreds in university examinations. A 

national school administration, several collaborating governments or even a community of many 

countries like the  OECD   1   may want to compare the learning outcomes of their educational systems. 

In these cases, sometimes more than 100 people will assess a tremendous number of students, 

which sometimes (e.g. in the  OECD   PISA   2   surveys) reaches nearly 1 million. Th ese assessment 

cases will diff er in many respects. On the one hand, a single teacher assessing his/her students 

might be well informed about the learning content and teaching methods of the assessed lectures, 

which is unknown in large assessment projects like  PISA . On the other hand, despite the very 

diff erent scales of these cases, there are many common requirements. In particular, all tests and 

examinations should meet the basic three requirements  objectivity, reliability  and  validity , as 

described by Adams nearly a century ago: 

  When a test measures a function, simple or complex, as completely as possible, it is a valid measure 

of that function regardless of whether it measures with high or low accuracy . . . Reliability . . . is 

associated fundamentally with absence of systematic errors. . . . When test and retest measure the 

same function twice, then the test is reliable . . . Objectivity exists only when all errors of measurement 

are random. With the advent of correlated errors, subjectivity appears.

 Adams, 1936 : 348–49  

 In this chapter, we present some general aspects and methods for assessment in computer science 

education ( CSE ) which aff ect particularly the  construct validity  of the assessment outcome. 

Construct validation identifi es the constructs that account for the way students’ performance in 

test varies ( Cronbach and Meehl, 1955 ). In education, the constructs to be assessed in most cases 

are learning outcomes: certain changes in the knowledge and behaviour of students. Until the 

1960s, learning outcomes were regarded predominantly as an increase of knowledge. Triggered by 

the modernization of education systems in the 1970s (see  Robinsohn, 1967 ) and acknowledging 

    1  Organisation for Economic Co- operation and Development.   

  2  Programme for International Student Assessment. 
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that no learning progress can be observed without changes in behaviour, learning achievements 

were defi ned and measured mostly in terms of learning objectives. 

 During the last decade, mainly stimulated by the  PISA  of the  OECD , the intended outcomes of 

learning are increasingly defi ned by target competencies as defi ned by Weinert ( 1999 ). Th ese two 

paradigms rely on very diff erent educational and psychological approaches and in consequence, 

show many diff erences. Th e most important might be that competencies must be very strictly based 

on empirical research ( Klieme et  al., 2004 ), while learning objectives tend to be set by educators 

according to personal beliefs or assumptions. In terms of the cognitive structure and the aspiration 

level of learning outcomes, learning objectives are usually organized by general, subject- independent 

taxonomies, while domain specifi c competency models are applied in the second case ( Leutner, 

Hartig and Jude, 2008 ). Th e staistical approaches used are very diff erent. In the case of learning 

objectives, the Classical Test Th eory is usually applied, while competencies are measured using Item 

Response Th eory ( Hartig, Klieme and Leutner, 2008 ). 

 In  CSE , many publications have focused on the suitability of learning object taxonomies (e.g. 

those of  Anderson-Krathwohl (Anderson and Krathwohl, 2001 ) or Biggs ( Biggs and Collis, 1982 )). 

Th ere have been some attempts to design specifi c taxonomies for  CSE  ( Fuller et al., 2007 ,  Meerbaum-

Salant, Armoni and Ben-Ari, 2010 ). However, the paradigm shift  from learning objectives to 

competencies has only just started. Only a few research projects have investigated the cognitive 

structure of competencies (e.g. the large German MoKoM project ( Neugebauer, Magenheim, 

Ohrndorf, Schaper and Schubert, 2015 )). Some recent progress has been made in the defi nition of 

competency models for programming ( Kramer, Hubwieser and Brinda, 2016 ).  

   16.2 Learning objectives and taxonomies  

 Th e application of learning objectives in education has a long and complicated history, starting 

with Mager ( 1961 ). We can defi ne a learning objective as ‘a statement that tells what learners should 

be able to do when they have completed a segment of instruction’ ( Smith and Ragan, 2005 : 969). 

   Key concept: Learning objectives    

 Learning objectives describe the goals that educators aim to achieve in terms 

of the learning progress of their students. Learning objectives may be located 

on very different abstraction levels. On the highest level, global objectives give 

the overall goals of education (e.g. the ability to act in a responsible way in the 

digital society). On an intermediate level, educational objectives describe the goals of some 

weeks or months of teaching, like ‘being able to implement class diagrams in an imperative 

programming language’. On the most concrete level, instructional objectives detail the 

intended learning progress during some few lessons, e.g. ‘to be able to combine different 

control structures to simple’. Usually, instructional objectives are formulated as combinations 

of a certain knowledge element and a description of observable behaviour (e.g. ‘being able 

to implement variables’). To provide structure, learning objectives are classifi ed by Learning 

Taxonomies (e.g. the Blooms Revised Taxonomy).  
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Taxonomies (e.g. the Blooms Revised Taxonomy).
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   Bloom’s taxonomy and its revision (by Anderson 
and Krathwohl)  
 Th e structure and hierarchy of learning objectives is described by category systems that are usually 

called ‘taxonomies’ in this context. Th e most famous taxonomy of learning objectives was presented 

by Bloom in 1956 ( Bloom, 1956 ). Firstly, he separated three domains of objectives: 

   ● Cognitive: mental skills (knowledge)  
  ● Aff ective: growth in feelings or emotional areas (attitude or self)  
  ● Psychomotor: manual or physical skills (skills).   

 Secondly, he presented a hierarchy of six levels for the cognitive domains: 

    1   Knowledge : Student recalls or recognizes information, ideas and principles in the approximate 

form in which they were learned.  

   2   Comprehension : Student translates, comprehends or interprets information based on prior 

learning.  

   3   Application : Student selects, transfers and uses data and principles to complete a problem or 

task with a minimum of direction.  

   4   Analysis : Student distinguishes, classifi es and relates the assumptions, hypotheses, evidence 

or structure of a statement or question.  

   5   Synthesis : Student originates, integrates and combines ideas into a product, plan or proposal 

that is new to him or her.  

   6   Evaluation : Student appraises, assesses or critiques on a basis of specifi c standards and 

criteria.   

 Bloom’s taxonomy has been widely accepted and applied in schools. Based on their experience with 

this taxonomy, Anderson and Krathwohl adopted it to a more outcome- focused modern education 

approach ( Anderson and Krathwohl, 2001 ). Th ey split the originally one- dimensional hierarchy 

into two dimensions, regarding a learning objective as a paired combination of (1) a certain type of 

 knowledge  and (2) an observable  behaviour  (called cognitive process). For the fi rst dimension, the 

knowledge was portioned into four categories. Th e levels on the behaviour dimension were derived 

from Bloom’s original taxonomy by switching from nouns to active verbs, reversing and renaming 

several levels. Th e result was the well- known ‘Blooms Revised’ taxonomy: 

    Table 16.1     The revised Bloom’s taxonomy ( Anderson and Krathwohl, 2001 )  

Cognitive process

  Knowledge    Remember    Understand    Apply    Analyse    Evaluate    Create  

 Factual 

 Conceptual 

 Procedural 

 Metacognitive 
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 To describe the specifi city of learning objectives, Anderson and Krathwohl proposed three levels 

( Anderson and Krathwohl, 2001 ): 

   ●  global  objectives: ‘complex, multifaceted learning outcomes that require substantial time and 

instruction to accomplish’;  
  ●  educational  objectives: ‘derived from global objectives by breaking them down into more 

focused, delimited form’;  
  ●  instructional  objectives, ‘focus teaching and testing on narrow, day- today slices of learning in 

fairly specifi c content areas’.   

 We will refer to this taxonomy from here on as  AK . As examples of global objectives, we could take 

the most frequently addressed goals of  CSE  in K-12 according to the fi ndings of a recent working 

group ( Hubwieser et al., 2015 ). Th e group identifi ed eight global objectives that were found in more 

than three of the analysed country reports on  CSE  in K-12 (see Table 16.2). 

 Obviously, the terms that describe educational objectives are oft en quite close to descriptions of 

potential competencies. 

   Example: Learning objectives and outcomes    

 Learning objectives may be phrased in terms of ‘explain’, ‘program’, ‘design’ 

and other ‘doing’ words. For example, over a period of time, you may want 

students to learn one or more of the following, which may be made more specifi c depending 

on the age group you are working with: 

   ● to be able to program a type of search or sort  
  ● to evaluate alternative models in order to choose one of them  
  ● to write an algorithmic solution for a problem  
  ● to explain and execute algorithms  
  ● to exemplify how 2-D data structures can be implemented.   

 Taking the last example, working with 2-D data structures, a task can be designed to 

measure this understanding (e.g. to write a program to allow users to enter data into a 

Example: Learning objectives and outcomes    

Learning objectives may be phrased in terms of ‘explain’, ‘program’, ‘design’ 

and other ‘doing’ words. For example, over a period of time, you may want

students to learn one or more of the following, which may be made more specifi c depending 

on the age group you are working with: 

   ● to be able to program a type of search or sort
  ● to evaluate alternative models in order to choose one of them
  ● to write an algorithmic solution for a problem
  ● to explain and execute algorithms  
  ● to exemplify how 2-D data structures can be implemented.

Taking the last example, working with 2-D data structures, a task can be designed to 

measure this understanding (e.g. to write a program to allow users to enter data into a

    Table 16.2     International comparison of key  CS  learning objectives ( Hubwieser et al., 2015 )  

  Global objective    Addressed by  

 Digital literacy (including use and handling of tools)   FI ,  USA ,  BY ,  KO ,  RUS ,  UK ,  SW ,  IN ,  IT ,  NRW ,  NZ  
 Computational thinking (including algorithmic and logical 

thinking) 
  FR ,  FI ,  USA ,  IS ,  RUS ,  UK ,  KO ,  SW ,  IN  

 Problem solving   NRW ,  USA ,  IS ,  KO ,  RUS ,  UK ,  SW ,  IN  
 Understanding of basic concepts of  CS  and  IT    NZ ,  BY ,  IS ,  KO ,  SW ,  IN ,  FR ,  IT  
 Career preparation and choice   NRW ,  SW ,  BY ,  IN ,  FR ,  IT ,  KO  
 Support awareness of social, ethical, legal and privacy 

issues and impact of  CS  
  NRW ,  KO ,  FR ,  RUS ,  UK ,  SW ,  NZ  

 General education to participate in society responsibly   NRW ,  BY ,  KO ,  SW ,  IN ,  RUS , 
 Prepare for university   NRW ,  KO ,  SW ,  IN  
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one- week timetable for a school). Completing the task successfully would demonstrate 

that the learning objective had been achieved: breaking the task down into sub- tasks 

(designing the data structure, writing an algorithm to populate it, initializing the data 

structure, and implementing the program) would give concrete learning outcomes from the 

task that could indicate the level of student performance. We will see later in the chapter 

that specifying learning objectives in this way can be problematic.   

   Pre- requisites  
 For students to write a simple object- orientated program that simulates a traffi  c light they would 

need to meet the following learning objectives: 

   ● Understand a class defi nition  
  ● Apply a for- loop  
  ● Be able to implement a certain mathematical formula.   

 However, in many cases it is impossible to achieve a set of instructional objectives in any arbitrary 

order, because some of them have to be learned before certain others can be reached. For example, 

one has to  understand  the concept of  object  (O1) before one is able to  understand  the concept of 

 class  (O2). Th is connection can be described by a  prerequisite relation  on the set of learning 

objectives, in this case between O1 and O2: ‘O1  is prerequisite of  O2’, meaning that ‘O1 has to be 

achieved before O2’ (see  Hubwieser, 2007 ;  Hubwieser, 2008 ). Closer considerations show that there 

are (at least) two diff erent types of prerequisite relations: 

    1  ‘Hard’ pre-requisites forced by a substantial or logical dependency: in other words concept2 

contained in objective O2  is based on  concept1 contained in objective O1. Th is means that it 

is not possible to understand concept2 without having understood concept1.  

   2  ‘Soft ’ pre-requisites suggested by didactical deliberations: it is necessary to reach objective O1 

in order to apply teaching or working methods that support didactical principles. Th erefore 

it is not  necessary  to reach O1 before objective O2, but it is  advisable  in order to ease or to 

improve the learning process towards O2.   

 Nevertheless, in many cases it is not easy to describe lessons by instructional objectives, primarily 

for two reasons: 

   ● there are huge numbers of objectives; and/or  
  ● there are many relations between these objectives.    

   The SOLO taxonomy  
 Following a totally diff erent approach, Biggs proposed his  SOLO  taxonomy ( Biggs and Collis, 

1982 ). Based on his theory of meaningful learning, he put more emphasis on the learner and the 

actual learning outcome, instead of the learning material. In Table  16.3,  capacity  ‘refers to the 

one- week timetable for a school). Completing the task successfully would demonstrate 

that the learning objective had been achieved: breaking the task down into sub- tasks 

(designing the data structure, writing an algorithm to populate it, initializing the data 

structure, and implementing the program) would give concrete learning outcomes from the

task that could indicate the level of student performance. We will see later in the chapter 

that specifying learning objectives in this way can be problematic.
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amount of working memory, or attention span, that the diff erent levels of  SOLO  require’ ( Biggs and 

Collis, 1982 : 26). Th e relating operation refers to ‘the way in which the cue and response interrelate’. 

Additionally, there is an attribute of ‘Consistency and closure’, referring to the felt need of the 

learner to come to a conclusion that is consistent with the data and other possible conclusions, 

which increases with the levels of the taxonomy (pp. 27–28).  

   Taxonomies for computer science  
 So far, we have looked at taxonomies in general: What about for computer science? 

 Th e  SOLO  taxonomy was applied to programming education by Hawkins and Hedberg ( 1986 ), 

who proposed diff erent programming patterns of novices that correspond to the original categories 

of Biggs and Collis ( 1982 ), using as an example the task of drawing simple shapes as circles or 

rectangles. He associated: 

   ● Pre- structural response: Immediate mode, commands are applied by trial and error, until the 

result is acceptable.  
  ● Unistructural response: Immediate mode, the commands are entered in a planned and 

deliberated sequence.  
  ● Multistructural response: Programming mode, structured sequences.  
  ● Relational response: Functions are defi ned and control structures are used. Code is reused.  
  ● Extended Abstract response: Parametrized functions.   

 More recently, a group of researchers investigated the fi t of diff erent taxonomies (Bloom,  AK  and 

 SOLO ) to the specifi c needs of computer science ( Fuller et al., 2007 ). Th e group found that some 

concepts and structures of these taxonomies were diffi  cult to transfer to  CS , in particular, that 

understand and apply have specifi c meaning and an unclear hierarchical position in this domain. In 

summary, the group recommended the use of the  AK  taxonomy, but proposed a change of structure. 

Th e group suggested that the cognitive process dimension be split into two sub- dimensions: 

 Interpreting  and  Producing.  Th e latter represents the more active part of the learning process (e.g. 

all programming activities) and contains the levels  none, apply and create . Th e remaining activities 

of the cognitive process dimension are arranged on the  interpreting  sub- dimension. 

    Table 16.3     The SOLO taxonomy ( Biggs and Collins, 1982 : 24–25)  

  SOLO Level    Capacity    Relating operation  

 Prestructural  Minimal: Cue and response confused  Denial, tautology, transduction. Bound to 
specifi cs 

 Unistructural  Low: Cue and one relevant datum  Can ‘generalize’ only in terms of one aspect 
 Multistructural  Medium: Cue and isolated relevant 

data 
 Can ‘generalize’ only in terms of a few limited 

and independent aspects 
 Relational  High: Cue and relevant data and 

interrelations 
 Induction: Can generalize within given or 

experienced context using related aspects 
 Extended Abstract  Maximal: Cue and relevant data and 

interrelations and hypotheses 
 Deduction and induction. Can generalize to 

situations not experienced 
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 Enabled by the division in sub- dimensions, it would be possible to express diff erent levels of 

applying or creating by this way. For example, a programming concept like a repetition loop could 

be applied without any understanding on the lowest level or by considering aspects of effi  ciency on 

the highest level  Evaluate.  

 Another attempt to propose a taxonomy for computer science was published in 2010 ( Meerbaum-

Salant et al., 2010 ). Here, a combination of the  SOLO  and the  AK  taxonomies was proposed based 

on their evaluation of a Scratch programming course. Looking for categories that were suitable for 

their specifi c context, they merged the  AK  categories Remember and Understand and subdivided 

levels 3 and 4 of Biggs according to  AK  levels: 

    1  Multistructural – Understanding.  

   2  Multistructural – Applying.  

   3  Relational – Applying.  

   4  Relational – Creating.    

   Limitations of learning objectives  
 Irrespective of their usefulness for specifi c purposes, the use of learning objectives has fallen into 

disrepute during the last decades. One of the reasons might be found in the suspicion that by 

elaborating a sequence of fi ne granular objectives for their lessons, teachers might be tempted to 

restrict the learning process of their students to a very tightly defi ned sequence (see  Duff y and 

Jonassen, 1992 ). It might be suggested that teachers should restrict the use of learning objectives to 

purposes where these are really helpful, for example: 

   ● To identify (one or more) possible learning paths through a specifi c subject area that is very 

complicated, very broad or very diffi  cult.  
  ● To arrange a set of concepts sequentially forced by certain circumstances, (e.g. to write a 

textbook).  
  ● To design an assessment or examination which has to take into consideration which learning 

progress the students have made up to its point of time.   

 However, despite all reservations against them, there still is a strong need for learning objectives 

under certain circumstances. Without these didactical tools, we would struggle to measure progress. 

As a compromise for the practising teacher we suggest providing only the key learning objectives 

for each lesson to describe, communicate and evaluate the learning processes. 

    Table 16.4     Taxonomy for computer science education ( Fuller et al., 2007 )  

  Interpreting 
Producing  

  Remember    Understand    Analyse    Evaluate  

 None 

 Apply 

 Create 
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   Example activity: Formulating and testing   
instructional objectives  

 Describe what your students are intended to learn during the next lesson. For 

this purpose, pick the 2–3 concepts of computer science that are most important for this 

lesson and combine them with descriptions of behaviour that you expect your students to 

be able to perform after the lesson. Examples may be ‘explain the role of the  IP  address for 

the transfer of e-mails’ or ‘program quick sort in Java’. Having the learning goals formulated, 

design a test task for each of these goals. Write an exemplary solution of these tasks and 

mark where the intended learning objectives are applied in this solution.    

   16.3 Competencies  

 Driven by the upsetting results of the fi rst large- scale studies of learning outcomes such as  TIMSS  

(Trends in International Mathematics and Science Study, see ( Mullis, Martin and Loveless, 2016 )) 

and  PISA  during the fi rst years of this century, the focus of education has shift ed broadly from 

knowledge and learning outcomes towards competencies. 

 Unfortunately, the terms ‘competence’ and ‘competency’ are used in a manifold of senses, ranging 

from the popular understanding ‘something that a person is able to do’ to sophisticated defi nitions 

from the fi eld of educational psychology. Additionally, there is no consistent diff erentiation between 

the terms  competence  and  competency  ( Rychen, 2003 ). Dörge ( 2010 ) compared the diff erent 

backgrounds and use of the terms  competency, skills  and  qualifi cation  in the German and the 

English language area and found considerable diff erences. 

 Here we draw on the well- known defi nition of Weinert ( 2001 ), who defi ned competencies as ‘the 

cognitive abilities and skills possessed by or able to be learned by individuals that enable them to 

solve particular problems, as well as the motivational, volitional and social readiness and capacity 

to use the solutions successfully and responsibly in variable situations’ (pp. 27–28). Furthermore, 

Weinert stressed that competencies may be composed of several facets: ability, knowledge, 

understanding, skills, action, experience and motivation. It is clear that the combination of these 

diff erent elements – cognitive ability and skill, motivation and readiness, and capacity to use – 

make competencies much more wide- ranging and complex than learning objectives, but give us 

the potential to describe and assess our subject in a more comprehensive way. Th us, the development 

of competencies is very relevant to teachers and a competency model can ensure more eff ective 

assessment. 

   Competency models  
 Th e main purpose of competency research is to defi ne intended learning outcomes of educational 

processes, as required by the ‘customers’ of these processes. Obviously, there is a strong need to 

measure these outcomes to evaluate the educational processes. To align learning and teaching 

Example activity: Formulating and testing   
instructional objectives 

p yp y

Describe what your students are intended to learn during the next lesson. For 

this purpose, pick the 2–3 concepts of computer science that are most important for this 

lesson and combine them with descriptions of behaviour that you expect your students to 

be able to perform after the lesson. Examples may be ‘explain the role of the  IP  address for 

the transfer of e-mails’ or ‘program quick sort in Java’. Having the learning goals formulated, 

design a test task for each of these goals. Write an exemplary solution of these tasks and 

mark where the intended learning objectives are applied in this solution.    
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processes and measure their success, these ‘target’ competencies must be defi ned and structured 

properly by suitable empirically validated competency models. For this purpose, diff erent kinds of 

models are used ( Klieme et al., 2004 ), which may focus on the structure, the diff erent hierarchical 

levels or the development of the relevant competencies ( Hartig, Klieme and Leutner, 2008 ). As 

regards the defi nition and measurement of competency models, much groundbreaking work was 

done in the context of the  PISA  studies (e.g.  Seidel and Prenzel, 2008 ,  OECD , 2013). 

 Klieme et al. ( 2004 ) describe three types of competency models: 

   ● Competency  Structure  models, usually structured by dimensions (e.g. competency areas or 

competency characteristics) describing the cognitive dispositions that learning individuals 

need to solve tasks and problems in a specifi c content or requirement area.  
  ● Competency  Level  models, giving information about the levels or profi les of the described 

competencies.  
  ● Competency  Development  models aiming to describe, how competencies will develop over 

time.   

 Level or development models usually have to be based on structure models. As a suitable framework 

for the development of subject domain- specifi c competency models, the  OECD  has presented ‘Th e 

Defi nition and Selection of Key Competencies (DeSeCo)’ ( Rychen, 2003 ). 

   Key concept: Competencies    

 Compared to learning objectives, competencies describe learning outcomes 

from the viewpoint of the ‘customers’ of educational institutions (e.g. the  IT  

industry or universities). A competency depicts a quite complex disposal of 

behaviour that can be applied to solve a certain task or problem that is relevant 

in ‘real’ life (e.g. the ‘ability to program a robot to move through a labyrinth’). 

 Competencies are arranged in competency model, which come in three types as 

structure, level and development models.  

 In  CSE , the development process of competency models is just beginning. As far as we know, the 

only serious attempt until now that could cope with the standards of  PISA  was the MoKoM project 

(see  Magenheim et al., 2010 ;  Schubert and Stechert, 2010 ;  Neugebauer et al., 2014 ). Th e scope of 

MoKoM was very broad, covering the four dimensions: 

   ● System application  
  ● System comprehension  
  ● System development and  
  ● Dealing with system complexity.   

 Th e project aimed to develop an empirically-based competency model in the context of informatics 

in school. Th e work had started with a theory- driven model that was enriched through empirical 

data. In addition, the MoKoM-project aims to develop ‘test instruments that are appropriate for 

   Key concept: Competencies    

 Compared to learning objectives, competencies describe learning outcomes 

from the viewpoint of the ‘customers’ of educational institutions (e.g. the  IT

industry or universities). A competency depicts a quite complex disposal of

behaviour that can be applied to solve a certain task or problem that is relevant 

in ‘real’ life (e.g. the ‘ability to program a robot to move through a labyrinth’).

Competencies are arranged in competency model, which come in three types as 

structure, level and development models.
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competence measurement and design, and the evaluation of learning environments that have been 

proven to be of high quality through competence measurement’ ( Schubert and Stechert, 2010 ). 

   Example: A competency model for  
object- orientated programming  

 Object- orientated programming ( OOP ) is usually introduced in upper secondary school or 

senior high school. A competency model for  OOP  has been proposed as follows: 

1  OOP  knowledge and skills 

1.1 Data structure (graph, tree, array) 

1.2 Class and object structure (object, attribute, association) 

1.3 Algorithmic structure (loops, conditional statement) 

1.4 Notional machine (data, working memory, processor, statement, program, 

automaton) 

 2 Mastering representation (language defi ned by syntax and semantics) 

 3 Cognitive Process 

3.1 Problem solving stage (understanding the problem, determine how to solve the 

problem, translating the problem into a computer language program, testing 

and debugging the program) 

3.2 Cognitive Process Type (Interpreting, Producing).  

 This proposal is based on an extensive literature study on competency models of different 

subject areas. So far, it has been validated through several surveys among researchers, 

teachers, and students ( Kramer, Hubwieser and Brinda, 2016 ).   

   Measuring competencies  
 Due to their complex structure, it is apparent that the defi nition and the measurement of 

competencies are not an easy matter. According to Klieme et al. ( 2004 ), competence can only be 

assessed and measured in terms of performance and can be seen as an ability to deal with a task or 

particular situation. Th is means that concrete situations need to be presented to illustrate or assess 

a competence. In addition, Klieme et  al. stress that one performance only does not indicate a 

competency. Th ey refer to a ‘spectrum of performance’ and require that assessment should be broad 

and involve a range of tests to measure competence. Th is also means that the assessment is not just 

refl ecting shallow and factual knowledge. 

 Obviously, we need to be convinced that the range of tests or tasks do actually focus on the 

competency that is being measured. In classical test theory we can do this by using a measure called 

internal consistency; this is calculated using a statistical test called Cronbach’s Alpha Coeffi  cient 

( Cronbach, 1951 ). Th e common rule of thumb for internal consistency is ‘excellent’ for  α  ≥ 0.9, 

‘good’ for ≥ 0.8 and acceptable for  α  ≥ 0.7. Th is can be used to ensure that a test is reliable when 

testing learning outcomes, but a diff erent type of statistical approach is needed for competencies. 

Th is is discussed in the next section.  

Example: A competency model for 
object- orientated programming

Object- orientated programming ( OOP ) is usually introduced in upper secondary school or 

senior high school. A competency model for  OOP  has been proposed as follows: 

1  OOP  knowledge and skills 

1.1 Data structure (graph, tree, array) 

1.2 Class and object structure (object, attribute, association) 

1.3 Algorithmic structure (loops, conditional statement) 

1.4 Notional machine (data, working memory, processor, statement, program, 

automaton) 

 2 Mastering representation (language defi ned by syntax and semantics) 

 3 Cognitive Process 

3.1 Problem solving stage (understanding the problem, determine how to solve the

problem, translating the problem into a computer language program, testing 

and debugging the program) 

3.2 Cognitive Process Type (Interpreting, Producing).  

This proposal is based on an extensive literature study on competency models of different 

subject areas. So far, it has been validated through several surveys among researchers, 

teachers, and students ( Kramer, Hubwieser and Brinda, 2016 ).
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   Item demands and abilities  
 To assess competencies, we need to design suitable test instruments. A test in this context is a set of 

tasks, which themselves comprise one or more items. For example, a typical multiple- choice 

question will represent one task with a textual description and several possible answers to check. 

Each of these answers represents a dichotomous item in this case. In other cases, for example if the 

result of a certain formula has to be calculated and responded as an open answer, this task represents 

one item only. Whether the task is open or closed, each item requires certain skills or abilities, and 

these are known as the ‘item demands’. 

 Th e item demands correspond roughly with instructional objectives in the sense of  

Anderson and Krathwohl (2001 ). As an example, imagine a test consisting of six tasks with open 

response format (e.g. submitting program code) that was designed to measure the (potential) 

competency ‘being able to manage a sequence of data by implementing linked lists and their basic 

operations’ (see  Kramer et al., 2016 ). One of the tasks (representing one item) could be ‘defi ne a Java 

class that implements a linked list’. Th en, among others, this task would have the following item 

demands: 

    (a) being able to write a class defi nition in Java  

   (b) being able to defi ne methods in a Java class defi nition and  

   (c) being able to write a constructor for Java classes.   

 Th is competency defi nition meets the defi nition of educational objectives (see  Anderson and 

Krathwohl, 2001 ): ‘. . . derived from global objectives by breaking them down into more focused, 

delimited form’, p. 15). Th e intended global objective could be ‘being able to manage write computer 

programs that store and process structured information’. Obviously, the item demands could be 

 instructional  objectives (‘focus teaching and testing on narrow, day- today slices of learning in fairly 

specifi c content areas’ ( Anderson and Krathwohl, 2001 : 16)). 

 Consider an example shown in Figure 16.1. If several items (e.g. Items 1, 2 versus Item 3 in 

Figure 16.1) diff er in their demands, two types of diff erences have to be decided (see  Hartig, 2008 ): 

    (1)  Th e items diff er in diffi  culty (e.g. in the empirical solution frequencies (case 1)).  

   (2)  Th e items diff er in relations between responses (i.e. correlations between scores for diff erent 

items (case 2)).   

 Figure 16.1 demonstrates how the diffi  culty of an item can be identifi ed. Case 1 shows equal 

correlations with diff erent diffi  culty level, whereas case 2 shows diff erent correlations with equal 

diffi  culties. In case 1, all three items have equally high correlations between each other. Items 1 and 

2 are equally diffi  cult, but item 3 is more diffi  cult. Th is fi nding could mean that the ability to master 

the task demand (c) highly correlates with the ability to master demands (a) and (b) and can be 

regarded as the ‘same ability’ for measurement purposes, which has to be developed to a higher 

degree to master task demand (c). 

 In case 2, items 1 and 2 have a high positive correlation. However, the correlations of item 3 with 

items 1 and 2 are substantially lower than the correlation between items 1 and 2. In this case, an 

additional ability dimension would be needed to explain the specifi c variation caused by the 
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additional demand (c) of item 3. Th is could be regarded as a ‘diff erent ability’ which is required to 

master item 3. 

 A third possibility would be that the task demand has no observable eff ect at all – items 1, 2 and 

3 could turn out to be equally diffi  cult and to have equal correlations among each other. In this case, 

the task demand would appear to be irrelevant for observable test performance. 

 In our linked- list example above, items 1 and 2 could require the demand (a) and (b), while only 

item 3 demands the implementation of a constructor (c). Th en, case 1 would indicate that the 

implementation of a constructor is more diffi  cult compared to (a) and (b), but nevertheless belongs 

to the same competency ‘implementing a linked list’. In contrast, case 2 would require a separate 

competency dimension for implementing constructors.  

   Item response theory  
 Item Response Th eory ( IRT ) is a way to analyse responses to tests or questionnaires with the goal 

of improving reliability and validity. It is a technique to ensure that the tests measure what they are 

supposed to measure (see Rasch,  1960 ). In terms of competencies,  IRT  is the current ‘state of the 

art’. While in Classical Test Th eory, the psychometric construct of interest (in our case a certain 

    Figure 16.1  Differences in item demands         
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competency) is considered to be measured directly by item scores,  IRT  considers this construct as 

latent and not directly measurable. 

 Instead, the probability of correct answers on a certain item depends on the competency in a 

certain way: 

  P ( X  
ik
  = 1 | θ  

i
 ,  β  

k
 ) =  f  ( θ  

i
 ,  β  

k
 ) (1) 

 Here  θ  
i
  is the  ability parameter  of person  i , representing his/her level of competency  β  

k
  the  diffi  culty 

parameter  of Item  k,  and  f  ( θ  
i
 , β  

k
 ) a certain function that is determined by the  psychometric model  

(e.g. the  Rasch Model , see below) that is assumed to fi t the observations. In most cases, these 

parameters have to be estimated by eff ortful numerical calculations. Depending on the structure of 

the psychometric constructs that are to be measured, several diff erent models may be applied (e.g. 

 unidimensional  models that cover only one single competency or, alternatively,  multidimensional  

models). One of the simplest and most widely used models is the basic unidimensional  Rasch 

Model  ( RM)  with one psychometrical factor and one parameter (1F1P): 

   (2)

 Due to its restriction on one factor and one parameter, the application of the  RM  requires three 

preconditions that have to be met: 

    1   Homogeneity  of items: Th is means that all items must measure the same psychometric 

construct. In this case, we can call this set of items  homogenous .  

   2   Local stochastic independence : the underlying psychometric construct is the only coupling 

factor between items.  

   3   Specifi c objectivity : for all samples from the population, the item parameters are independent 

of the specifi c person sample; the same holds for all samples of items and person parameters.   

 Provided that this model is applicable, some very convenient simplifi cations can be made. For 

example, the sum of the scores of all individual items is a suffi  cient statistic, which means that the 

(estimated) person parameter depends only on the  total number  of correct answers given by this 

person. It does not matter,  which  items the person has responded to correctly. 

   Key concept: Item response theory    

 While the Classical Test Theory assumes that the constructs of interest (e.g. 

motivation or intelligence) can be measured more or less directly with some 

errors, Item Response Theory ( IRT ) aims to give mathematical dependencies 

between the personal level of the constructs of interests (e.g. the level of 

competency) and the probability to solve a certain item. Thus it takes both the diffi culty of 

the item and the profi ciency of the student into account.  

 Th e graph of this function looks as displayed in Figure  16.2 for four diff erent values of  β  

(‘Ability’). Th ese graphs are called  Item Characteristic Curves  ( ICC s). 

   Key concept: Item response theory    

 While the Classical Test Theory assumes that the constructs of interest (e.g. 

motivation or intelligence) can be measured more or less directly with some 

errors, Item Response Theory ( IRT ) aims to give mathematical dependencies 

between the personal level of the constructs of interests (e.g. the level of 

competency) and the probability to solve a certain item. Thus it takes both the diffi culty of 

the item and the profi ciency of the student into account. 
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 If the diffi  culty ( β ) varies, the  ICC  shift s horizontally. Th is demonstrates a rather convenient 

advantage of  IRT : that person and item parameters are located on the same scale. Th us, they can be 

directly compared to allow statements like ‘the probability for a person x to solve item y is greater 

than 0.5 if  θ  
x
  >  β  

y
 ’. 

 Obviously, there might be cases where  ICC s have diff erent slopes. If so, we cannot model this situation 

using  RM . Another model which can be used in this case is the Birnbaum Model ( BM ), which has an 

additional parameter called  Discrimination   δ  
k
 . ( Birnbaum, 1968 ). In the Birnbaum Model there is: 

   (3)

 Figure 16.3 displays the  ICC s of another (real existing) item set that varies in diffi  culty (horizontal 

position)  β  as well as in discrimination (slope)  β . As the  ICC s of item A2e and A2f in Figure 16.3 

demonstrate, the variation of slope can cause intersections of  ICC s. Th is would mean that the 

diffi  culty order of the regarded items depends on the person parameter, which would violate the 

requirement of specifi c objectivity (see above). Th e reason for this eff ect might be that the answers 

on these items might be infl uenced by other factors than the construct to be measured. On the 

other hand, low variation of slopes and missing intersections of a certain set of items in the  BM  can 

be regarded as a good indicator that the  RM  is applicable on this set. 

    Figure 16.2  Example of an item- characteristic curve of the Rasch Model         
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 In the case that there is more than one psychometric construct to be measured, multidimensional 

models have to be applied. To read more about these we recommend Rost and Carstensen’s original 

paper ( Rost and Carstensen, 2002 ).  

   Factor analysis of dichotomous data  
 To investigate the homogeneity of a set of items, classical explorative factor analysis is applied 

traditionally. Yet, as the score format in competency measurement is oft en dichotomous (because 

things get much more complicated otherwise) this is not applicable. Latent trait analysis (LTA) 

off ers a better alternative ( Bartholomew, Steel, Moustaki and Galbrath, 2008 ). 

 With  LTA , it is assumed that the responses of the students to a given set of items can be described 

by a certain psychometric model (e.g. by the  Rasch Model ). Under this assumption, one can estimate 

all person and item parameters based on the scoring matrix of the responses. Using the estimated 

values of the parameters, by calculating the probability  P  in equation (1) of section  II .E, the expected 

number of occurrences  E(r)  of all possible response patterns  r  (e.g. 01101 in the case of fi ve items) 

can be calculated. For  p  dichotomous items, we have 2 p  response patterns (i.e. combinations of 0s 

and 1s with the length  p ). For each pattern  r , its expected frequency  E(r ) is compared to the actually 

    Figure 16.3  Example of an item- characteristic curve using the two- parameter 
Birnbaum Model         
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observed pattern frequency  O(r) . For the diff erences, the log- likelihood test statistic  G  2  and the 

common  X  2  statistic are calculated that both describe the diff erences of the expected and the 

measured values. As both statistics are approximately  Χ  2  distributed, we could estimate the goodness 

of fi t of the applied Rasch Model. Th e precondition for this calculation is a suffi  cient number of 

datasets, which assures that the frequency of each pattern has an expectation value of at least 5 

( Bartholomew et al., 2008 ).  

   Rasch Model tests  
 In addition to  LTA , a set of standard tests for the fi t of the chosen psychometric model (e.g. the 

Rasch Model) are oft en applied. Th ese standard tests for specifi c objectivity (remember that 

objectivity is one of the goals in improving summative assessment) are used to check that the 

model would produce the same results for diff erent groups of participants. Th ey use the idea of a 

splitting criteria to split participants into groups and test that the results fi t for each group. Examples 

of three tests that can be used are as follows: 

   ●  Likelihood-Ratio -Test ( Andersen, 1973 ) with the splitting criteria  median ( respectively  mean),  

values of  combination score  and  gender  on the level of the total item set.  
  ●  Martin-Löf-Test  ( Martin-Löf, 1974 ) with the splitting criterion  median ( respectively  mean)  

on the level of the total item set.  
  ●  Wald-Test  ( Wald, 1943 ) with the splitting criteria  median ( respectively  mean)  and gender on 

the level of single items.   

 Th ese tests can be carried out using a statistical package such as R; we do not have space to explore 

these any further here.   

   16.4 Educational standards  

 Educational standards are sets of competencies depicted in detail that were decided by educational 

authorities to be the minimal or average learning outcomes of educational institutions (e.g. some 

algebraic competencies that should be achieved by all Year 9s of regional grammar schools). In an 

infl uential paper on the development of national educational standards, Klieme et al. state: 

  Educational standards, as conceived of in this report, draw on general educational goals. Th ey specify 

the competencies that schools must impart to their students in order to achieve certain key 

educational goals, and the competencies that children or teenagers are expected to have acquired by 

a particular grade. Th ese competencies are described in such specifi c terms that they can be translated 

into particular tasks and, in principle, assessed by tests ( Klieme et al., 2004 : 15).  

 In computer science, a lot of work has to be done until our domain is ready for the defi nition of 

standard in this sense;  CS  runs far behind traditional subjects like mathematics. Th e  Principles and 

Standards of the National Council of Teachers of Mathematics  (National Council of Teachers of 
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Mathematics ( NCTM ),  2000 ), are the best- known and most infl uential example internationally. 

Th ey describe framework conditions for instruction on all grade levels, from the beginning of 

primary education to the end of secondary schooling and provide guidelines for improving 

mathematics teaching by moving towards comprehension- and problem- based instruction. In 

particular the  NCTM  presents a defi nition of  problem solving  that might be transferred to  CSE  as 

well: ‘Problem solving means engaging in a task for which the solution method is not known in 

advance. In order to fi nd a solution, students must draw on their knowledge, and through this 

process, they will oft en develop new mathematical understandings. Solving problems is not only a 

goal of learning mathematics, but also a major means of doing so’ ( NCTM , 2000: 52). 

 Some proposals for educational standards in informatics have been published in Austria 

( Dorninger, 2005 ) and from the German  Gesellschaft  für Informatik  ( GI ) ( Gesellschaft  für 

Informatik e V, 2008 ). 

 Recently the  CSTA  Standards Task Force presented its K-12 Computer Science Standards 

(Revised 2011) in a draft  version ( Seehorn et al., 31 March 2011 ). Th ese standards may be comprised 

by the subcategory  standards  (of the category  intentions  in the  DM ). It defi nes three levels for the 

learning outcomes, where the highest is divided into three discrete ‘courses’: 

   ● level 1 (recommended for grades K–6): Computer science and me  
  ● level 2 (recommended for grades 6–9): Computer science and community  
  ● level 3 (recommended for grades 9–12): Applying concepts and creating real- world solutions  
  ● level 3A (recommended for grades 9 or 10): Computer science in the modern world  
  ● level 3B: (recommended for grades 10 or 11): Computer science principles  
  ● level 3C: (recommended for grades 11 or 12): Topics in computer science.   

 To avoid the perception that  CSE  should focus exclusively on programming, fi ve complementary 

and essential strands throughout all three levels are distinguished: 

   ● computational thinking  
  ● collaboration  
  ● computing practice  
  ● computers and communication devices and  
  ● community, global and ethical impacts.   

 Th ese strands are further illustrated by lists of competencies that represent the proposed standards. 

Additionally the draft  paper also off ers a variety of activities, assigned to the levels and strands, 

respectively that show in detail what classroom teaching might look like.  

   16.5 Summary  

 In this chapter we have considered some quite challenging questions relating to how we can be sure 

we test and measure students’ learning accurately and objectively. Th is is a complex fi eld which 

needs to be addressed within  CSE , although the development of standards and competencies is still 
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in the early stages of development. Th e change to a competency approach has been driven partly by 

 PISA , an international assessment measure by which the achievements of young people in diff erent 

countries can be compared. However, even at a local level, it is important to have an understanding 

of the potential inaccuracies of traditional testing methods and new methods for ameliorating the 

situation. 

   Key points    

   ● In the area of summative assessment, there is a move from defi ning 

and measuring learning outcomes to being able to specify more broad- 

ranging competencies.  
  ● Previously, learning outcomes have been categorized through the use of 

taxonomies such as Bloom’s, the revised Bloom’s taxonomy by Anderson and 

Krathwohl and the  SOLO  taxonomy.  
  ● Competencies describe learning outcomes from the viewpoint of the 

‘customers’ of educational institutions.  
  ● More rigorous methods for measuring test results can give us accurate 

information. Item Response Theory ( IRT ) is starting to replace classical test 

theory as a method by which tests can be evaluated for reliability and validity.  
  ● Educational standards are sets of competencies that explain in detail the 

minimal or average learning outcomes of educational institutions, regions or 

countries.    

   Further refl ection    

   ● Consider how students in your country participate in summative 

assessments, at the national, regional or school level. To what extent are the 

measurements of student performance in computer science reliable, valid and 

objective?  
  ● Consider the educational standards in your country for  CSE  in schools. How are 

these made explicit to teachers and students?     
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