18

Principles of Programming Education

Michael E. Caspersen

Chapter outline

18.1 Introduction

18.2 Teaching and learning programming is a grand challenge
18.3 Principles for teaching programming

18.4 In the classroom

18.5 Summary

4 N\
Chapter synopsis *A X
The defining characteristics of the computer is its programmability, and
programming is the essence of computing/informatics. Indeed, computing is
much more than programming, but programming — the process of expressing
one’s ideas and understanding of the concepts and processes of a domain in a form that
allows for execution on a computing device without human interpretation — is essential to
computing.

Teaching and learning programming is not easy; in fact, it is considered one of the grand
challenges of computing education. In this chapter, we describe the nature of the challenge,
and we provide a dozen teaching principles to help overcome the challenge.

\ J

18.1 Introduction

Writing a chapter about the principles of teaching of programming is an intriguing task but for
many reasons also challenging — an entire book could be written on the subject.

219

52_ &

/
!

Michael E. Caspersen

Director of It-vest — netwworking universities, Denmark
Honorary professor, Department of Computer Science,
Aarhus University, Denmark

mca@acm.org



Chapter 18: Principles of Programming Education

Tools

/ ? \4 Finished

Concepts

programs

The missing link

Language
constructs

The tools of the trade Products

Figure 1-1: The missing link between the tools of the trade and products

From M.E. Caspersen (2007). Educating Novices in the Skills of Programming, PhD Dissertation, 2007, p. 6.

https://cs.au.dk/~mec/dissertation/Dissertation.pdf



https://cs.au.dk/~mec/dissertation/Dissertation.pdf

WHAT SHOULD WE TEACH IN AN INTRODUCTORY PROGRAMMING COURSE?

David Gries

Computer Science Department

Cornell University
Ithaca, New York 14850

Two excerpts:

In essence, we want to teach how to
solve any problem by finding an algorith-

mic solution to it. But what do we really

teach? We describe the tools the student
has at his disposal (the do-loop, goto,
declarations, etc.), give a few examples,
and then tell him to write programs. Al-
most no word on how to begin, how to find
ideas, how to structure his thoughts, and
how to arrive at a well-structured, well-
written, readable program.

Let me make an analogy to make my
point. clear. Suppose you attend a course
in cabinet making. The instructor brief-
ly shows you a saw, a plane, a hammer, and
a few other tools, letting you use each
one for a few minutes. He next shows you
a beautifully-finished cabinet. Finally,
he tells you to design and build your own
cabinet and bring him the finished product
in a few weeks.

You would think he was crazy! You
would want instructions on designing the
cabinet, his ideas on what kind of wood
to use, some individual attention when you
don't know what to do next, his opinion on
whether you have sanded enough, and so on.

https://dl.acm.org/doi/10.1145/800183.810447



https://dl.acm.org/doi/10.1145/800183.810447

Grand
Challenges

in Computing

Education

Andrew McGettrick, Roger Boyle, R
Roland Ibbett, John Lloyd, —
Gillian Lovegrove and Keith Mander -

—

2005

Qrganised by:

; = UK
L EeoRC /D e g
! UNIVERSI

However, concerns exist among the academic community
internationally that when we set out to teach programming
skills to students, we are less successful that we need to be
and ought to be.

The particular concern is that, after more than forty years of
teaching an essential aspect of our discipline to would-be
professionals, we cannnot do so reliably. Indeed, there are
perceptions that the situation has become worse with time.

2.4.2 Challenge

Given the situation above, the computing challenge for this
area is as follows:

Understand the programming process and programmer

practice to deliver effective transfer of knowledge and
skills.

https://www.researchgate.net/publication/30975393 Grand Challenges in Computing Education--A_Summary



https://www.researchgate.net/publication/30975393_Grand_Challenges_in_Computing_Education--A_Summary

Chapter 18: Principles of Programming Education

Abstraction

Progression

I~

Process
Examples




Seymour Papert
on computational thinking

Computational thinking is
the use of programming

— as an extension of our mind —
to experience and understand the world,
to manipulate the world,
and to create things

that matter to us.

Seymour Papert (1980). Mindstorms: Children, computers and powerful ideas.
New York, Basic Books, Inc. p. 9.

Seymour Papert




