<u>1. DATA ANALYSIS</u>

Uncertainties in calculations

Rule 1 When two measurements are added or subtracted, the uncertainty in the result is always equal to the sum of the uncertainties of the two

measurements.

Measurement 1; $d_1 \pm \Delta d_1$, where Δd_1 is the uncertainty of the measurement, Measurement 2; $d_2 \pm \Delta d_2$, where Δd_2 is the uncertainty of the measurement, a) The **difference** between the two measurements = $(d_1 \pm \Delta d_1) - (d_2 \pm \Delta d_2)$ = $(d_1 - d_2) \pm (\Delta d_1 + \Delta d_2)$

This is because the difference can range from

a maximum value of $(d_1 + \Delta d_1) - (d_2 - \Delta d_2) = (d_1 - d_2) + (\Delta d_1 + \Delta d_2)$, to a minimum value of $(d_1 - \Delta d_1) - (d_2 + \Delta d_2) = (d_1 - d_2) - (\Delta d_1 + \Delta d_2)$, The uncertainty is therefore $\Delta d_1 + \Delta d_2$

b) The sum of the two measurements = $(d_1 \pm \Delta d_1) + (d_2 \pm \Delta d_2)$ = $(d_1 + d_2) \pm (\Delta d_1 + \Delta d_2)$

This is because the sum can range from

a maximum value of $(d_1 + \Delta d_1) + (d_2 + \Delta d_2) = (d_1 + d_2) + (\Delta d_1 + \Delta d_2)$, to a minimum value of $(d_1 - \Delta d_1) - (d_2 - \Delta d_2) = (d_1 + d_2) - (\Delta d_1 + \Delta d_2)$, The uncertainty is therefore $\Delta d_1 + \Delta d_2$

Rule 2 When two measurements are multiplied or divided, the <u>percentage</u> uncertainty in the result is always equal to the sum of the <u>percentage</u> uncertainties of the two measurements.

Measurement 1; $d_1 \pm \Delta d_1 = d_1 (1 \pm \Delta \underline{d}_1)$, where $\Delta \underline{d}_1 (\times 100\%)$ is the percentage d_1 uncertainty of the measurement,

Measurement 2; $d_2 \pm \Delta d_2 = d_2 (1 \pm \Delta d_2)$, where $\Delta d_2 (\times 100)$ is the percentage d_2 uncertainty of the measurement,

a) The **product** of the two measurements = $d_1 (1 \pm \Delta d_1) \times d_2 (1 \pm \Delta d_2)$

$$= d_1 d_2 (1 \pm \underline{\Delta d_1}) \times (1 \pm \underline{\Delta d_2})$$

$$= d_1 d_2 (1 \pm \underline{\Delta d_1}) \times (1 \pm \underline{\Delta d_2})$$

$$= d_1 d_2 (1 \pm \underline{\Delta d_1} \pm \underline{\Delta d_2} + \underline{\Delta d_1} \underline{\Delta d_2})$$

$$= d_1 d_2 (1 \pm \underline{\Delta d_1} \pm \underline{\Delta d_2}) \text{ as the last}$$

$$d_1 d_2$$

term in the bracket above is negligible compared with the other terms .

.'. The percentage uncertainty in the product $d_1 d_2$ is $\Delta d_1 + \Delta d_2$ (x 100 %) $d_1 d_2$

a) The **quotient** of the two measurements = $d_1 (1 \pm \Delta d_1)$ $\frac{d_1}{d_2 (1 \pm \Delta d_2)}$

$$= \underline{d}_{1} \times (1 \pm \underline{\Delta d}_{1})$$

$$\underline{d}_{2} \qquad \underline{d}_{1}$$

$$(1 \pm \underline{\Delta d}_{2})$$

$$\underline{d}_{2}$$

To progress further with this analysis , we need to use the mathematical approximation

$$\frac{1}{x + y} = (1 - y) \text{ for } y \ll 1 (1 - y)$$

This is valid provided $y \ll 1$ because $(1+y)(1-y) = 1 + y - y + y^2 = 1$ (as y^2 is negligible)

© Jim Breithaupt, (2015), *Physics*, 4th edition, Palgrave.

term in the bracket above is negligible compared with the other terms .

.'. The percentage uncertainty in the quotient $\frac{d_1}{d_2}$ is $\frac{\Delta d_1}{d_1} + \frac{\Delta d_2}{d_2}$ (×100%) $\frac{\Delta d_2}{d_1} + \frac{\Delta d_2}{d_2}$

Further note

Where a measured quantity y is raised to a power n,

the percentage uncertainty in $y^n = n$ times the percentage uncertainty of y.

This follows because y^n = the product of y with itself n times so the percentage uncertainty of y must be added to itself n times to give the percentage uncertainty in y^n .

Examples

- 1. The diameter of a wire was measured at 0.28 ± 0.01 mm. Calculate
- (a) the percentage uncertainty in the diameter of the wire,
- (b) the area of cross-section of the wire,

(c) the percentage uncertainty in the area of cross section of the wire.

Solution

(a) % uncertainty in diameter
$$d = \frac{0.01}{0.28} \times 100 = 3.6 \%$$

(b) The area of cross-section $A = \frac{\pi}{4} \frac{d^2}{4} = \frac{\pi}{4} \frac{(0.28)^2}{4} \text{ mm}^2 = 6.16 \times 10^{-2} \text{ mm}^2$

(c) % uncertainty in $A = 2 \times$ % uncertainty in d because $A = \frac{\pi d}{4}^2$

.'. % uncertainty in A = 7.2 %

2. The mass and length of a certain length of the above wire was measured as below ;-

Mass = 0.496 ± 0.002 grams , Length = 1000 ± 2 mm

Calculate

(a) the density of the wire in kg m^{-3}

(b) the percentage uncertainty of the density

(c) the uncertainty of the density

Hence state the calculated density value including the uncertainty of this value. **Solution**

(a) Area of cross-section ,
$$A = 6.16 \times 10^{-2} \times 10^{-6} \text{ m}^2$$

.'. Volume, $V = \text{length} \times \text{area of cross-section} = 1.00 \times 6.12 \times 10^{-8} \text{ m}^3$ Mass, $m = 0.496 \text{ x } 10^{-3} \text{ kg}$

.'. Density =
$$\underline{\text{Mass}} = \underline{0.496 \times 10}^{-3} \text{ kg} = 8050 \text{ kg m}^{-3}$$

Volume $6.16 \times 10^{-8} \text{ m}^{3}$

(b) % uncertainty in length $L = \frac{2}{1000} \times 100 = 0.2 \%$ Because the volume $V = \text{length } L \times \text{area of cross-section } A$,

% uncertainty in volume V = % uncertainty in length + % uncertainty in A = 7.4%

% uncertainty in mass $m = \frac{0.002}{0.496} \times 100 = 0.4 \%$

- .'. % uncertainty in density = % uncertainty in m + % uncertainty in V = 7.8%
- (c) Uncertainty of the density = 7.8 % of 8050 kg m⁻³ = 628 kg m⁻³.

.'. Density =
$$8050 \pm 630 \text{ kg m}^{-3}$$