1. DATA ANALYSIS

Uncertainties in calculations

Rule 1 When two measurements are added or subtracted, the uncertainty in the result is always equal to the sum of the uncertainties of the two measurements.

Measurement $1 ; d_{1} \pm \Delta d_{1}$, where Δd_{1} is the uncertainty of the measurement, Measurement $2 ; d_{2} \pm \Delta d_{2}$, where Δd_{2} is the uncertainty of the measurement,
a) The difference between the two measurements $=\left(d_{1} \pm \Delta d_{1}\right)-\left(d_{2} \pm \Delta d_{2}\right)$

$$
=\left(d_{1}-d_{2}\right) \pm\left(\Delta d_{1}+\Delta d_{2}\right)
$$

This is because the difference can range from
a maximum value of $\left(d_{1}+\Delta d_{1}\right)-\left(d_{2}-\Delta d_{2}\right)=\left(d_{1}-d_{2}\right)+\left(\Delta d_{1}+\Delta d_{2}\right)$, to a minimum value of $\left(d_{1}-\Delta d_{1}\right)-\left(d_{2}+\Delta d_{2}\right)=\left(d_{1}-d_{2}\right)-\left(\Delta d_{1}+\Delta d_{2}\right)$, The uncertainty is therefore $\Delta d_{1}+\Delta d_{2}$
b) The sum of the two measurements $=\left(d_{1} \pm \Delta d_{1}\right)+\left(d_{2} \pm \Delta d_{2}\right)$

$$
=\left(d_{1}+d_{2}\right) \pm\left(\Delta d_{1}+\Delta d_{2}\right)
$$

This is because the sum can range from
a maximum value of $\left(d_{1}+\Delta d_{1}\right)+\left(d_{2}+\Delta d_{2}\right)=\left(d_{1}+d_{2}\right)+\left(\Delta d_{1}+\Delta d_{2}\right)$, to a minimum value of $\left(d_{1}-\Delta d_{1}\right)-\left(d_{2}-\Delta d_{2}\right)=\left(d_{1}+d_{2}\right)-\left(\Delta d_{1}+\Delta d_{2}\right)$, The uncertainty is therefore $\Delta d_{1}+\Delta d_{2}$

Rule 2 When two measurements are multiplied or divided, the percentage uncertainty in the result is always equal to the sum of the percentage uncertainties of the two measurements.

Measurement $1 ; d_{1} \pm \Delta d_{1}=d_{1}\left(1 \pm \underline{\Delta d}_{1}\right)$, where $\underline{\Delta d}_{1}(\times 100 \%)$ is the percentage uncertainty of the measurement,

Measurement 2; $d_{2} \pm \Delta d_{2}=d_{2}\left(1 \pm \frac{\Delta d_{2}}{d_{2}}\right)$, where $\frac{\Delta d_{2}}{d_{2}}(\times 100)$ is the percentage uncertainty of the measurement,
a) The product of the two measurements $=d_{1}\left(1 \pm \quad \underline{\Delta d}_{1}\right) \times d_{2}\left(1 \quad \pm \quad \underline{\Delta d}_{2}\right)$

$$
\begin{aligned}
& =d_{1} d_{2}\left(1 \pm \frac{\Delta d_{1}}{d_{1}}\right) \times\binom{ 1 \pm \frac{\Delta d_{2}}{d_{2}}}{=d_{1} d_{2}\left(1 \pm \frac{\Delta d_{1}}{d_{1}} \pm \frac{\Delta d_{2}}{d_{2}}+\frac{\Delta d_{1}}{d_{1}} \frac{\Delta d_{2}}{d_{2}}\right.}
\end{aligned}
$$

$$
=d_{1} d_{2}\left(1 \pm \frac{\Delta d_{1}}{d_{1}} \pm \frac{\Delta d_{2}}{d_{2}}\right) \text { as the last }
$$

term in the bracket above is negligible compared with the other terms .
\therefore The percentage uncertainty in the product $d_{1} d_{2}$ is $\frac{\Delta d_{1}}{d_{1}}+\frac{\Delta d_{2}}{d_{2}}(\times 100 \%)$
a) The quotient of the two measurements $=d_{1}\left(1 \pm \underline{\Delta d}_{1}\right)$

$$
\begin{gathered}
\frac{d_{1}}{d_{2}\left(1 \pm \underline{\Delta d}_{2}\right)} \\
=\frac{d_{2}}{d_{1}} \times\left(1 \pm \frac{\Delta d_{1}}{d_{1}}\right) \\
\left(\begin{array}{ll}
\left.1 \pm \frac{\Delta d_{2}}{d_{2}}\right)
\end{array}\right.
\end{gathered}
$$

To progress further with this analysis, we need to use the mathematical approximation

$$
\frac{1}{+y)}=(1-y) \text { for } y \ll 1(1
$$

This is valid provided $\mathrm{y} \ll 1$ because $(1+\mathrm{y})(1-\mathrm{y})=1+\mathrm{y}-\mathrm{y}+\mathrm{y}^{2}=1$ (as y^{2} is negligible)

$$
\begin{aligned}
& \therefore \quad\left(1 \pm \quad \underline{\Delta d}_{1}\right) \\
& =\left(1 \pm \frac{\Delta d_{1}}{d_{1}}\right) \times\left(1 \pm \frac{\Delta d_{2}}{d_{2}}\right) \\
& \left(1 \pm \frac{\Delta d_{2}}{d_{2}}\right) \\
& =\frac{d_{1}}{d_{2}}\left(1 \pm \frac{\Delta d_{1}}{d_{1}} \pm \frac{\Delta d_{2}}{d_{2}} \pm \frac{\Delta d_{1}}{d_{1}} \frac{\Delta d_{2}}{d_{2}}\right) \\
& =\frac{d_{1}}{d_{2}}\left(1 \pm \frac{\Delta d_{1}}{d_{1}} \pm \frac{\Delta d_{2}}{d_{2}}\right) \quad \text { as the last }
\end{aligned}
$$

term in the bracket above is negligible compared with the other terms .
\therefore The percentage uncertainty in the quotient $\begin{aligned} & \frac{d_{1}}{1} \\ & d_{2}\end{aligned}$ is $\frac{\underline{\Delta d}}{d_{1}}+\frac{\Delta d_{2}}{d_{2}}(\times 100 \%)$

Further note

Where a measured quantity y is raised to a power n ,
the percentage uncertainty in $y^{n}=n$ times the percentage uncertainty of y.
This follows because $\mathrm{y}^{\mathrm{n}}=$ the product of y with itself n times so the percentage uncertainty of y must be added to itself n times to give the percentage uncertainty in y^{n}.

Examples

1. The diameter of a wire was measured at $0.28 \pm 0.01 \mathrm{~mm}$. Calculate
(a) the percentage uncertainty in the diameter of the wire,
(b) the area of cross-section of the wire,
(c) the percentage uncertainty in the area of cross section of the wire.

Solution

(a) $\%$ uncertainty in diameter $d=\frac{0.01}{0.28} \times 100=3.6 \%$
(b) The area of cross-section $A=\frac{\pi d^{2}}{4}=\frac{\pi(0.28)^{2}}{4} \mathrm{~mm}^{2}=6.16 \times 10^{-2} \mathrm{~mm}^{2}$
(c) $\%$ uncertainty in $A=2 \times \%$ uncertainty in d because $A=\frac{\pi d^{2}}{4}$
$\therefore \quad \%$ uncertainty in $A=7.2 \%$
2. The mass and length of a certain length of the above wire was measured as below ;-

$$
\text { Mass }=0.496 \pm 0.002 \text { grams , Length }=1000 \pm 2 \mathrm{~mm}
$$

Calculate
(a) the density of the wire in $\mathrm{kg} \mathrm{m}^{-3}$
(b) the percentage uncertainty of the density
(c) the uncertainty of the density

Hence state the calculated density value including the uncertainty of this value.

Solution

(a) Area of cross-section , $A=6.16 \times 10^{-2} \times 10^{-6} \mathrm{~m}^{2}$
$\therefore \quad$ Volume, $V=$ length \times area of cross-section $=1.00 \times 6.12 \times 10^{-8} \mathrm{~m}^{3}$
Mass , $m=0.496 \times 10^{-3} \mathrm{~kg}$
\therefore Density $=\underline{\text { Mass }}=\frac{0.496 \times 10^{-3}}{\text { Volume }} \frac{\mathrm{kg}}{6.16 \times 10^{-8} \mathrm{~m}^{3}}=8050 \mathrm{~kg} \mathrm{~m}^{-3}$
(b) $\%$ uncertainty in length $L=\frac{2}{1000} \times 100=0.2 \%$

Because the volume $V=$ length $L \times$ area of cross-section A,
$\%$ uncertainty in volume $V=\%$ uncertainty in length $+\%$ uncertainty in $A=7.4 \%$
$\%$ uncertainty in mass $m=\frac{0.002}{0.496} \times 100=0.4 \%$
$\therefore \%$ uncertainty in density $=\%$ uncertainty in $m+\%$ uncertainty in $V=7.8 \%$
(c) Uncertainty of the density $=7.8 \%$ of $8050 \mathrm{~kg} \mathrm{~m}^{-3}=628 \mathrm{~kg} \mathrm{~m}^{-3}$.
\therefore Density $=8050 \pm 630 \mathrm{~kg} \mathrm{~m}^{-3}$

