3. FURTHER PROOFS

1. Proof of the lens formula $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$

Fig 3A The lens formula (see Textbook p153)

In Fig 3A, the ratio imageheight $=\underline{v}$
object height u
The ratio is also equal to $\frac{v-f}{f}$ (similar triangles)

$$
\begin{aligned}
\therefore \frac{v}{u} & =\frac{v-f}{f} \\
v f & =v u-u f \\
\therefore \quad v f+u f & =v u
\end{aligned}
$$

Dividing each term by $u v f$ therefore gives the lens formula $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$

2. Proof that the moment of a horizontal rule of weight W and length L about one end $=1 / 2 W L$

Fig 3B Centre of gravity of a rule (see Fig 1.19, Textbook p18)

Consider the rule divided along its length into n equal elements of length δx, where n is a large even number.

The weight of each element $=W / n$.
The moment of the first element from the pivot $=\frac{W}{\mathrm{n}} \times 0.5 \delta x=\frac{W \delta x}{2 \mathrm{n}}$

The moment of the second element from the pivot $=\frac{W}{n}(0.5 \delta x+\delta x)=3 \frac{W \delta x}{2 n}$
The moment of the $\mathrm{r}^{\text {th }}$ element from the pivot $=(2 \mathrm{r}-1) \frac{W \delta x}{2 \mathrm{n}}$
\therefore The total moment about the pivot $=\{1+3+\ldots \ldots \ldots .+(2 n-1)\} \frac{W \delta x}{2 n}$

It can be shown that if n is an even number, $\{1+3+\ldots \ldots \ldots .+(2 \mathrm{n}-1)\}=\mathrm{n}^{2}$ Hence the total moment about the pivot $=\mathrm{n}^{2} \frac{W \delta x}{2 \mathrm{n}}=W \underline{\mathrm{n} \delta \mathrm{x}} \frac{W}{2} \underline{L}$

For other regular shapes, the total moment is determined using integration which is a more generalised mathematical method of adding the contributions of each element.

