<u>3. FURTHER PROOFS</u>

1. Proof of the lens formula
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

Fig 3A The lens formula (see Textbook p153)

In Fig 3A, the ratio $\underline{\text{imageheight}}_{\text{object height}} = \underline{v}_{u}$

The ratio is also equal to $\underline{v-f}$ (similar triangles)

Dividing each term by *uvf* therefore gives the lens formula $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$

2. Proof that the moment of a horizontal rule of weight W and length L about one end = $\frac{1}{2} WL$

Fig 3B Centre of gravity of a rule (see Fig 1.19, Textbook p18)

Consider the rule divided along its length into n equal elements of length δx , where n is a large even number.

The weight of each element = W/n.

The moment of the first element from the pivot = $\frac{W}{n} \times 0.5 \,\delta x = \frac{W \,\delta x}{2n}$

The moment of the second element from the pivot $= \frac{W}{n} (0.5 \,\delta x + \delta x) = 3 \frac{W \,\delta x}{2 n}$

The moment of the rth element from the pivot = $(2r - 1) \frac{W \delta x}{2n}$

.'. The total moment about the pivot = $\{1+3+\dots+(2n-1)\} \frac{W \,\delta x}{2n}$

It can be shown that if n is an even number, $\{1+3+\dots+(2n-1)\} = n^2$ Hence the total moment about the pivot $= n^2 \frac{W\delta x}{2n} = W \frac{n\delta x}{2} = W \frac{L}{2}$

For other regular shapes, the total moment is determined using integration which is a more generalised mathematical method of adding the contributions of each element.