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8. More about calculus in physics 

This section is about physical quantities that change with time or change when a different 

quantity changes.  Calculus is about the mathematics of rates of change (differentiation) and 

the cumulative effect of small changes (integration). In this section, we will be studying the 

mathematical processes of differentiation and integration and how we use them to form 

mathematical models of physical systems. 

Part 1     Differentiation  

Consider a physical variable y which depends on another physical variable x, for example the 

resistance of a metal wire depends on the temperature of the wire.  Suppose y varies 

continuously with x as shown in Figure 1. 

The rate of change of y with x  at any point on the  line in Figure 1 is given by the gradient of 

the line at that point. In Figure 1, the gradient decreases as x increases so the rate of change of 

y with x decreases as x  increases.  The gradient at any point is the tangent to the curve at that 

point.   

Figure 1 shows a magnified view of two points P and Q that are close together.  The 

coordinates of the two points are (x,y) for P  and  (x + x , y +  y ) for Q    where x  and  y 

are small changes of x and y.  The gradient of the straight line PQ  is  equal to   
  

  
  .  In the 

limit x  0 , Q P  and the gradient of  PQ becomes equal to the gradient of the tangent to 

the curve. Thus the rate of change of y with respect to x is equal to the limit of   
  

  
   as  x  

0 .   This is written as  
   

   
 .  

Where there is a mathematical equation for y  in terms of x ,  the rate of change of y with 

respect to x can be determined by differentiating y  with respect to x .  Differentiation is a 

mathematical process with specific rules based on mathematical principles.  

Differentiation of   y = x
2 
 

If  y = x
2
  , then  y +  y =  (x + x ) 

2 
= x

2  
+  2xx  +  x

2 

so  y =  x
2  

+  2xx  +  x
2
  -  y =  2xx  +  x

2
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Therefore     
  

  
 
          

  
              

Hence    
   

   
 =  (

  

  
)
    

     the limit of        x as  x  0       

Differentiation of   y = x
n 

,     

If  y = x
n  

,  then y +  y =  (x + x ) 
n 

= x
n  

+  nx
n-1

 x  +  n(n-1)x
n-2

 x
2 

 + terms in higher  

                                                                                             2 

powers of   

                                                                                                

so  y =  x
n  

+  nx
n-1

 x  +  n(n-1)x
n-2

 x
2 

 + + terms in higher powers of        -  y 

    

                 =  x
n  

+  nx
n-1

 x  +  n(n-1)x
n-2

 x
2 

 + etc   -  x
n 

                                                     2 

                 =   nx
n-1

 x  +  n(n-1)x
n-2

 x
2 

 + etc    

                                             2 

Therefore     
  

  
 
           

 (   )

 
                                      

  
 

 

                                   
 (   )

 
                                    

        
           

Hence    
   

   
 =  (

  

  
)
    

 

     the limit as  x  0 of         
 (   )

 
                                         

           

 Notes ;    

1.The expansion (x + x ) 
n 

 generates a series of (n + 1) terms. The coefficient of the term  in  

x
n-1

 x is always equal to n, as shown by the examples below.    

(x + x ) 
2 

 =   x
2
 +  2xx + 

 
x

2
  

(x + x ) 
3 

 =  (x + x ) (x + x ) 
2 

 =  (x + x )( x
2
 +  2xx + 

 
x

2
)  =  

 
 x

3
 +  3x

2
x + 

 
3xx

2  
+  

x
2   

(x + x ) 
4 

 =  (x + x ) (x + x ) 
3 

 =(x + x ) (x
3
 +  3x

2
x + 

 
3xx

2  
+  x

2  
)  

                 = 
 
 x

4
 +  4x

3
x +  6x

2
x

2  
+  

 
4xx

3  
+  x

4   

2.When x
n
  is subtracted from the expansion of (x + x ) 

n 
 and the remainder is  divided by 

x, only the term n x
n-1

 remains in the limit x  0 

Differentiation of  y = e
kx

  

As explained on p364 , for  y = e
x
 , then   

   

   
 =  e

x 
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This is because the exponential  function  e
x
  = 1 + x  +  x

2
/2  +   x

3
 /3×2×1 +  x

4
/4×3×2×1 +.... 

Differentiating each term after the first term (1)  in the above equation gives the preceding 

term so differentiating all the terms reproduces the same set of terms.   

In other words, if y = e
x

  , then 
   

   
 =  e

x
 

For y = e
kx

, then let  z = kx            

Therefore   
   

  
 
  

  
 
  

  
            

Differentiation of  y = sin   

As explained on p 310 and below,   if  y = r sin    then  
   

   
         

Figure 2  - see Fig. 20.21 (p310 in textbook)  

In the diagram, OP is a rotating phasor  of length r which at time t  is at angle   to the x-axis.  

The y-coordinate of the tip of OP is therefore  given by  y = r sin     

A short time t later,  OP is at angle  +   and the tip of OP has moved along an arc of 

length  s  as shown in Figure 2.  As a result, the   y-coordinate has changed by y  where y  

=   s cos. 

Since  s  = r     as shown in Figure 2, then  y  =    r cos    

Hence    
   

   
 =  (

  

  
)
    

  
(      )  

  
         

Notes; 

1.If  = k x with r = 1  then  y =  sin kx    and   
   

   
   

   

  

   

   
                     

2. If  = 2f t  with r = 1  then  y =  sin 2f t    and  
   

   
  

   

  

   

   
            

           

Differentiation of  y = cos   

In the right-angle triangle shown in Figure 3 ,  sin   =  o / h    and   cos   =  a / h   

Also,  sin (90-   )  =  a/h and cos (90-   )  =  o/h  

Therefore   sin    cos (90-   )  and cos   sin (90-   )    
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If y = cos  , then  
   

   
  

 (    (      ))   

   
    

 (    (      ))   

 (     )
       (    )               

Therefore  
   

   
         

Part 2  Integration 

 Consider a physical variable y which depends on another physical variable x and where their 

product is a physical quantity.  For example, the tension T   in a stretched rubber band 

depends on its  extension  x   and the product  T x  is the work done W to extend the rubber 

band  by a small distance x.   

Figure 4 shows how the tension T in a rubber band varies with extension x. 

  

 The area of a strip of width x  under the line of the graph represents the product T x 

. Thus the area of the strip represents the work done W to extend the rubber band  by 

a small distance x.   

 The total area under the line of the graph from  x1 to x2  is sum of all  strips of width 

x from x1 to x2. Thus the total area under the line of the graph from  x1 to x2  

represents the total work done to extend the rubber band from  x1 to x2  . 

 

y =  cos  

x =  sin  

1 

Figure 3 The right-angle triangle 
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The area under the line of a graph can be estimated or determined mathematically if the 

equation of the line is known. 

1.To estimate the area under the line, count the number of graph grid squares under the line  

and multiplying that number by the physical quantity represented by 1 grid square. For 

example, in Figure 4, there are  33 grid squares under the line from x1= 60 mm to x2 = 260 

mm  and each square represents  20 mJ of work done ( = 1 N × 20 mm).  Therefore, the total 

work done to stretch the rubber band from extension x1 to x2 is  660 mJ. 

The table below lists some further examples of graphs in which the area under the line has a 

physical significance. 

y-axis x-axis area 

force distance  work done 

velocity time  distance travelled 

force time  change of momentum 

current  time  charge flow 

charge potential  energy stored 

 

2. To determine the area under the line mathematically, the equation for the line must be 

known. In other words, an equation for y in terms of x is needed.  The area of a strip of width 

x is therefore y x.  Let S represent this area. The mathematical process of adding up all the 

strip areas from x1 to x2 is called integration. The mathematical sign for integration   is   the 

symbol     .  

Thus ∫     
  

  
 represents the process of adding up all the strip areas from  x1 to x2  .  In other 

words, the total area from x1 to x2 =  ∫    ∫     
  

  

  

  
.    

Note Because S = y x then   =  
   

   
 .   

Therefore   the total area from x1 to x2   ∫     
  

  
   ∫

   

     
    

  

  
∫     
  

  
            

In Figure 1,   ∫   
  

  
 represents the process of adding up all the small changes of work done 

W.  So the total work done to extend the rubber band from x1 to x2  ,  W = ∫   
  

  
 =∫    

  

  
. 

However, there isn’t an equation for T in terms of x for a rubber band. So the estimation 

method must be used to find the work done.  

However, for a stretched spring that obeys Hooke’s law, T = k x  where k is the spring 

constant.  So the work done to stretch a spring W = ∫   
  

  
 =∫    

  

  
 = ∫       

  

  
 

Therefore W = ∫          
  

  
∫     
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Using the rules of differentiation from the previous section  
 

  
 (
 

 
    )         

so∫        
  

  
∫  

 

  
 (
 

 
    )       

  

  
  (
 

 
    

 )    (
 

 
    

 )    as explained in the note above. 

Therefore W =   (
 

 
     

 )    (
 

 
     

 ) 

 

Some further examples of the use of integration in physics  

1. Motion of an object moving with constant  acceleration a 

At any time, its rate of change of velocity  
  

  
 = a 

Therefore if its initial velocity is u and   its velocity at time t is  ,  

then      - u = ∫          ∫         
    

     

    

     
 

  Hence   = u + at 

2. Work done to escape from the surface of a spherical planet of radius R 

Consider an object of mass m above the surface at distance r from the centre of a planet as 

shown in Figure 5.   

Figure 5 Work done to escape from a planet – see Fig. 28.8 (b) (p446 in textbook)  

Work must be done to move the object away from the planet . To increase its distance from 

the centre by  r ,  the amount of work that needs to be done W  =  F r  where F is the 

magnitude of the gravitational force on the object. 

From Newton’s Law of Gravitation  (see topic  28.1) ,     
    

  
   where M is the mass of 

the planet. 

Hence              
    

  
   

Therefore the total work W that must be done to move the object from the surface to infinity 

is given by          ∫   
 

   
    ∫      

 

   
  ∫

    

  
   

 

   
  

Using the rules of differentiation from the previous section  
 

  
 (
 

 
 )   

 

  
 (     )    

 

  
   

Therefore ∫   
 

  
       

 

   
 [     ]   

  
 

 
    =    

Hence       ∫
    

  
   

 

   
        ∫   
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Note; Because the potential energy of the object  is zero at infinity and work done to escape 

from the surface W     
    

 
,  the potential energy of the object at the surface of the planet is 

equal to     
    

 
.  See p446 for a simplified version of the proof of this equation.  

  

 

Part 3   Differential equations in physics 

 Differential equations are used in physics to form a mathematical model of a system. Such 

equations relate relevant physical variables and their rates of change to each other, as shown 

in the following examples;-      

1.A sphere falling in a fluid (topic 4.2) 

Figure 6 shows a spherical object of mass m falling in a fluid after being released at rest in 

the fluid. The object is acted on by the force of gravity (mg) downwards, the viscous drag of 

the fluid upwards and a constant upthrust U due to displacement of the fluid as explained in 

topic 8.8.  The drag force F increases with speed v in accordance with the equation F = kv 

where k is a constant.  

The resultant force on the object is therefore  mg – U -  kv . Therefore , the acceleration  is not 

constant  due to viscous drag  and depends on velocity v in accordance with the  equation   a 

= c -  bv  where  c =  (g –U/m) and b = k/m  

Therefore   
  

  
          which is an example of a first-order differential equation.   Note 

that c and b are both constants in this situation 

To solve this equation, substitute y  for c  - bv   to give  
  

  
       .   

mg 

U  + kv 

v 

sphere 

fluid 

Figure 6  A sphere falling in a fluid 
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Rearranging this equation gives  
  

 
         

Applying the process of integration to both sides gives  ∫
  

 

 

  
    ∫   

 

 
 

Hence   [   ]  
 
     [   ] 

       

Thus                              (
 

  
)        

Therefore         
     where yo is the initial value of y.   

To check this, differentiating both sides of the equation with respect to time gives  

  
  

  
         

           .  

Therefore, since y =  c – bv  then yo = c   so  the solution      
     becomes   

c – bv =c e
-bt  

  . 

 Hence v = c ( 1  - e
-bt  

 ) / b  where  c =  (g –U/m) and b = k/m  

Figure 7 below shows how the speed v changes with time. Note that as time t  infinity, 

      0 so speed v   c / b  =  (mg – U) / k   which is therefore the terminal speed.  

Figure 7 Terminal speed – see Fig. 4.10 (p58 in textbook)  

2.An object undergoing simple harmonic motion.(topic 29.3) 

Figure 8 shows an object of mass m on a  spring at equilibrium and at an instant when it is 

oscillating vertically.   

Figure 8 The oscillations of a loaded spring – see Fig 29.10 (a) and (b) (p459 in textbook)  

When the object is displaced vertically from rest and then released,  it oscillates vertically 

about its rest position.  The tension T in the spring changes as the extension e  of the spring 

changes in accordance with  Hooke’s Law  T = k e 

1. When the object is at rest as in Figure 8(a) , the tension in the spring at this position To = 

the weight of the mass ( mg ) . Hence    k e o  =  mg   where  eo is the extension of the spring 

from its natural length when it is at rest. 

2. When the object is oscillating as in Figure 8(b),the resultant force F on it = mg - T = T o - T 

Since To  = k e o  and  T = k e , then  T o - T   =  k e o  -  k e  =  -  k (e -  e o)  

However,  e -  e o  =    s , the displacement of the object  from the rest position,  

Hence the resultant force F =  T o - T   =  -  k (e -  e o) =  - k s   

Therefore, the acceleration of the object a =
 

 
   

   

 
       s  where  
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The acceleration is not constant and depends on displacement in accordance with the simple 

harmonic motion equation   a = - 
2 

s  where  

oscillations.  

Since     
  

  
   and     

  

  
   , then    

 

  
 (
  

  
)   

   

   
   .   

Hence the SHM equation above can be written  as a second- order differential equation  

   

   
     - 2 

s  . 

This solution of this equation is  s  =  A sin  +   B cos  where A and B  are 

constants that depend on the initial values of displacement and velocity .   

To check the solution above, since   
  

  
(        )            and  

                                                          
  

  
(        )            (          )    

Differentiating both sides of the equation s  =  A sin  +   B cos  with respect to 

time t gives 

  

  
       cos -   B  sin  

Differentiating both sides of the equation for 
  

  
     with respect to time t gives 

   

   
  -    sin -   B  cos  

Hence     
   

   
   =  - s 

Note  

1.The initial conditions determine the values of A and B.   For example 

 if  s = 0    at  t  = 0   then B  must be zero  and therefore s =  A sin   where A  is 

the maximum displacement (ie. the amplitude) of the oscillations. See Figure 9(a) 

 if  
  

  
 = 0  at  t = 0  then A must be zero  and therefore  s =  B cos where B is the 

maximum displacement (ie. the amplitude) of the oscillations.  See Figure 9(b) 

Figure 9 Displacement – time graphs for an oscillating object (see Fig. 29.3 and 29.4, p454 

in textbook) 

(a) s =  A sin   (see Fig 29.3) 

(b) s =  A cos   (see Fig 29.4 with the y-axis relabelled ‘displacement’ not ‘velocity’) 

2. The above analysis assumes the drag force and the upthrust on the object are both 

negligible.  If a drag force D is present and the upthrust is negligible, the resultant force F at 
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displacement s  is given by the equation F  =  - k s  - D. Therefore the acceleration is given by 

the equation    
 

 
 
     

 
           (   )  

For viscous drag , D = k v  where v is the velocity of the object and k is a constant.  

Hence acceleration a =           (
 

 
)   

The variation of displacement s with time t may be determined using a spreadsheet or by 

solving the acceleration equation. The spreadsheet method is explained on p494-6 of the text 

book.   

To solve the acceleration equation, substituting  
   

   
 for  acceleration a and  

  

  
 for velocity v 

gives the following second order differential equation 

   

   
  =            

  

  
    where     = (

 

 
) 

Rearranging this equation with all the terms on the left hand side gives  

   

   
    

  

  
        = 0 

For light damping , the viscous force is much less than the maximum restoring force (ie. 

     such that the  term in the above equation is much less than the last term).  In this 

situation , the solution of the above differential equation is       
         .   

Figure 10 shows a graph of the displacement against time for this solution. Notice that the 

effect of the viscous force is to make the amplitude smaller and smaller without affecting the 

time period. The above solution shows that the amplitude decreases exponentially. 

Figure 10 Light damping – see Fig 29.14 (p462 in textbook)  

 


