Contents

Periodic Table v
Foreword by Professor Sir John Meurig Thomas FRS xi
Preface xii
To the Student: How to Use this Book xiii
Acknowledgements xiv
Useful Physical Constants; General Data; Conversion Factors; Using the NIST Website xv
1 Numbers, Units and Measurement 1
1.1 Very small and very big numbers 1
1.2 Logarithms 2
1.3 Units 3
1.4 Errors in experiments 6
1.5 Reporting measurements 9
Revision questions 13
2 Elements, Compounds and Reactions 15
2.1 Matter and energy 15
2.2 Physical and chemical changes 19
2.3 Chemical formulae 20
2.4 Writing and balancing equations 24
Revision questions 27
3 Inside the Atom 29
3.1 Atomic structure 29
3.2 Isotopes 32
3.3 Mass spectrometer 35
3.4 Types of mass spectrometers 38
3.5 Soft and hard ionization in mass spectrometers 38
3.6 Mass quadrupole and 'time-of-flight' spectrometers 38
3.7 Electronic structure of atoms 39
3.8 Evidence for the existence of energy levels in atoms 40
3.9 More advanced ideas about electronic structure 43
Revision questions 47
4 Bonding Between Atoms 48
4.1 Why atoms combine 48
4.2 Ionic bonding 49
4.3 Covalent bonding 54
4.4 Coordinate bonding 58
4.5 Ionic and covalent compounds - two extremes 59
4.6 Resonance structures 62
Revision questions 63
5 More about Bonding 65
5.1 Exceptions to the octet rule 65
5.2 Shapes of molecules 67
5.3 Shapes of molecules with multiple bonds 71
5.4 Molecules with and without dipoles 72
5.5 Metallic bonding 74
5.6 Giant molecules 74
5.7 Forces between covalent molecules 76
Revision questions 82
6 Reactions of Ions in Solution 83
6.1 Dissolution of salts in water 83
6.2 Ionic equations 84
6.3 Producing ions in water by chemical reaction 87
6.4 Acids and bases 91
6.5 Reactions of acids 92
6.6 Acids produced when gases $\mathrm{CO}_{2}, \mathrm{SO}_{2}$ and NO_{2} dissolve in water 95
6.7 Reactions of the hydroxide ion 96
6.8 Use of reactions in the identification of ions in solution 97
6.9 Identification of common gases 99
Revision questions 101
7 Oxidation and Reduction 102
7.1 Redox reactions 102
7.2 Oxidation numbers 104
7.3 Oxidizing and reducing agents 105
7.4 Writing and balancing redox equations 106
7.5 Redox couples 108
7.6 Activity series of metals 114
7.7 Corrosion of iron 115
7.8 Redox reactions in nature 116
Revision questions 118
8 The Mole 120
8.1 Molecular mass 120
8.2 Moles 121
8.3 Percentage composition by mass 127
8.4 Water of crystallization 129
8.5 Calculating amounts from equations 129
8.6 Calculating gas volumes 131
8.7 Percentage yield 132
8.8 Limiting reagents 133
Revision questions 135
9 Calculating Concentrations 137
9.1 Concentration of solutions 137
9.2 Standard solutions 140
9.3 Volumetric analysis 142
9.4 Other units of concentration 148
9.5 pH scale 152
Revision questions 153
10 Gases, Liquids and Solids 155
10.1 Heat and temperature 155
10.2 Changes in the state of matter 155
10.3 Gas laws 158
10.4 Kinetic molecular theory of gases 162
10.5 Ideal gas equation 163
10.6 Adsorption of gases on solids 165
10.7 Vapour pressure 166
10.8 Critical temperature and pressure 16910.9 Phase diagramsRevision questions
11 Solutions and Solubility 173170172
11.1 Solubility 173
11.2 Making drugs more soluble
11.3 Dynamic nature of dissolution 179
11.4 Solubility of sparingly soluble ionic compounds 179
11.5 Distribution of a solute between two solvents 184
11.6 Solubility of gases in water 185
11.7 Osmosis 189
11.8 Colloids 191
Revision questions 192
12 Chemical Families 194
12.1 Periodic Table 194
12.2 Group 1 elements 195
12.3 Group 2 elements 197
12.4 Group 14 elements 199
12.5 Group 17 elements 203
12.6 Group 18 elements 205
12.7 Elements of the first transition series 206
12.8 Variation of properties of elements within groups and periods 211
Revision questions 214
13 Energy Changes in Chemical Reactions 215
13.1 Conservation of energy 215
13.2 Key points about enthalpy changes 218
13.3 Determination of ΔH in the laboratory 222
13.4 Special kinds of standard enthalpy change 224
13.5 Standard enthalpy of formation 225
13.6 Standard enthalpy of combustion 228
13.7 Nutrition 229
13.8 Lattice enthalpy 231
13.9 Energetics of bond breaking and bond making 235
Revision questions 238
14 Speed of Chemical Reactions 239
14.1 Reaction rate 239
14.2 Factors affecting reaction rate 243
14.3 Reaction rate expressions 247
14.4 Examples of rate expressions found by experiment 249
14.5 Calculations using rate expressions 250
14.6 More about first-order reactions 254
14.7 Reaction mechanisms 257
14.8 Catalysis 258
Revision questions 260
15 Chemical Equilibria 262
15.1 Introduction 262
15.2 Equilibrium law and equilibrium constant 264
15.3 Meaning of equilibrium constants 266
15.4 Effects of changing concentration, pressure and temperature upon equilibria 269
15.5 Production of ammonia by the Haber-Bosch process 277
15.6 Heterogeneous equilibria 279
Revision questions 279
16 Gibbs Energy Changes 281
16.1 Spontaneous processes 281
16.2 Examples of spontaneous reactions 282
16.3 Entropy 282
16.4 Entropy Change ΔS 284
16.5 Introducing the Gibbs energy change, ΔG 285
16.6 ΔG and spontaneous change 285
16.7 How Gibbs energy, G, changes as a reaction moves towards equilibrium 286
16.8 The distinction between ΔG and ΔG^{\ominus} 287
16.9 An equilibrium may be reached from both forward and back directions 288
16.10 The standard Gibbs energy change of a reaction ΔG^{\ominus} 289
$16.11 \Delta G^{\ominus}$ and equilibrium constants, K 289
16.12 Use of ΔG^{\ominus} as an indicator of whether or not a reaction is 'allowed to go' 291
16.13 Strongly exothermic reactions are usually thermodynamically 'allowed' over a wide range of temperatures 293
16.14 Summing up: ΔG^{\ominus} and ΔG 293
Revision questions 295
17 Acid-Base Equilibria 297
17.1 Ionic equilibria in water 297
17.2 Acids and bases in aqueous solution 301
17.3 Hydrolysis of salts 307
17.4 Buffer solutions 308
17.5 Acid-base indicators 312
17.6 Variation of pH during an acid-base titration 313
17.7 Buffering action of carbon dioxide in water 315
Revision questions 316
18 Organic Chemistry: Hydrocarbons 318
18.1 Alkanes 318
18.2 Alkenes 327
18.3 Alkynes 333
18.4 Aromatic hydrocarbons 335
Revision questions 339
19 Common Classes of Organic Compounds 341
19.1 Halogenoalkanes (or alkyl halides) 342
19.2 Alcohols 342
19.3 Carbonyl compounds 345
19.4 Carboxylic acids 349
19.5 Amines 352
19.6 Optical isomerism 353
19.7 Amino acids and proteins 356
19.8 Substituted benzene derivatives 358
Revision questions 360
20 Organic Mechanisms 362
20.1 Mechanisms and types of organic reactions 362
20.2 Key factors in reaction mechanisms 363
20.3 Mechanism of the chlorination of methane 363
20.4 Addition reactions of alkenes 364
20.5 The stability of carbocations 365
20.6 Substitution reactions of benzene 366
20.7 Aromatics 369
20.8 Nucleophilic substitution reactions 370
Revision questions 370
21 Separating Mixtures 372
21.1 Separating a solid from a liquid 372
21.2 Separating two liquids 375
21.3 Separating solids 377
21.4 Steam distillation 377
21.5 Ion exchange 378
21.6 Solvent extraction 378
21.7 Chromatography 381
Revision questions 385
22 Spectroscopy 387
22.1 Electromagnetic spectrum 387
22.2 Energy levels of atoms and molecules 390
22.3 Spectrometers 391
22.4 Absorbance and transmittance of a sample 392
22.5 More about ultraviolet and visible spectra 394
22.6 Absorption spectra and colour 398
22.7 Infrared spectroscopy 400
22.8 Beer-Lambert law 406
22.9 Photosynthesis 408
22.10 Nuclear magnetic resonance: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy 409
$22.11{ }^{13} \mathrm{C}$-NMR spectroscopy 415
Revision questions 418
SPECIAL TOPICS
23 Nuclear and Radiochemistry 421
23.1 Radioactivity 421
23.2 Radionuclides and radioisotopes 423
23.3 More about nuclear radiation 424
23.4 Mathematics of radioactive decay 425
Revision questions 429
24 Environmental Chemistry 430
24.1 Introduction 430
24.2 Atmospheric pollution 431
24.3 Water pollution 434
24.4 Fracking 437
Revision questions 438
25 Forensic Chemistry 439
25.1 Prerequisites 439
25.2 The scope of forensic chemistry 439
25.3 Variation of the concentration of a poison with time 441

```
CONTENTS
```

25.4 Calculations using first-order kinetics 441
25.5 The zeroth-order kinetics of ethanol decay 442
25.6 Drinking and driving 443
25.7 Analysis of drugs in hair 444
Revision questions 445
26 Chemistry Saving Lives 447
26.1 Prerequisites 447
26.2 Pharmaceutical chemistry 447
26.3 Selected drugs 448
26.4 Developing a medicine 448
26.5 Lethal dose 449
26.6 British Pharmacopoeia (BP) 450
26.7 Common types of drugs 450
Revision questions 454
27 Fire and Flame 456
27.1 Fire 456
27.2 Flame 457
27.3 The chimney effect 459
27.4 Mechanism of combustion 460
27.5 Energy changes during combustion 462
27.6 Autoignition temperature and flammability limits 463
27.7 The burning of wood 465
27.8 The Davy lamp 466
27.9 The trench effect and the King's Cross fire 466
Revision questions 468
Electronic Structures 470
Answers to Exercises and Revision Questions 472
Glossary 495
Index 501
Valencies of Common Ions 508

Numbers, Units and Measurement

OBJECTIVES

This unit:

- Explains standard notation
- Tests you on the use of your calculator
- Describes how to work out the units of a quantity
- Defines accuracy and precision
- Looks at errors and the use of significant figures

CONTENTS

1.1 Very small and very big numbers
1.2 Logarithms
1.3 Units
1.4 Errors in experiments
1.5 Reporting measurements 9 Revision questions 13

1.1 Very small and very big numbers

Science often involves very large and very small numbers. Such numbers may be cumbersome to write down, and an abbreviated notation (known as 'standard' or 'scientific' notation) is often used. This relies upon the following mathematical notation:

$$
\begin{aligned}
& 10^{-6}=0.000001 \\
& 10^{-5}=0.00001 \\
& 10^{-4}=0.0001 \\
& 10^{-3}=0.001 \\
& 10^{-2}=0.01 \\
& 10^{-1}=0.1 \\
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=100 \\
& 10^{3}=1000 \\
& 10^{4}=10000 \\
& 10^{5}=100000 \\
& 10^{6}=1000000
\end{aligned}
$$

Now let us look at an example of standard notation. Think of the number 100. This is the same as 1×100. In standard notation we write this as 1×10^{2}. Similarly,

```
2300 becomes 2.3 < 1000 or 2.3 1 103
6749008 becomes 6.749008 < 106
0.0012450 becomes 1.2450 \times 10-3
```


EXERCISE 1A

Standard notation
Express the following in standard notation
(i) 0.0000345
(iv) 3.5
(ii) 300000000
(v) 602200000000000000000000
(iii) 0.0820575
(vi) 17

Sometimes, we are only interested in approximate values. The symbol \approx means 'approximately' e.g. $6.023 \times 10^{23} \approx 6 \times 10^{23}$.

1.2 Logarithms

Logarithms to the base 10

The logarithm (or 'log') of a number to the base ten is the power to which the number 10 has to be raised in order to equal that number. For example, $100=10^{2}$. Therefore, the \log of 100 is 2 . Similarly, since $0.0001=1 \times 10^{-4}$, the \log of 0.0001 is -4 .

What is the \log of 150 ? The \log of 150 is the value of x in the expression

$$
150=10^{x}
$$

We carry out this operation on a calculator. In many types of calculator, this is done by entering \log, the number, and then pressing the $=$ button. The \log of 150 is 2.176 . We write this as

```
log(150)=2.176
```

What if you are provided with the \log of x and asked to find x ? Using the above example, how do we get back to 150 from 2.176 ? To do this we would need to evaluate $10^{2.176}$. (To carry out this operation on a scientific calculator we use the 10^{x} key, a common sequence of operations being shift, 10^{x}, number, and =.) We then write

$$
10^{+2.176}=150
$$

Similarly,

$$
10^{-0.9104}=0.1229
$$

Logarithms to the base e (natural logs)

The symbol ' e ' is a mathematical constant (like π) where

$$
e=2.718 \ldots
$$

The logarithm of a number to the base e is the power to which the number e has to be raised in order to equal that number. For example, $\mathrm{e}^{3.912}=50$ so that the natural \log of 50 is 3.912. In this book we symbolize natural logs as 'ln':

$$
\ln (50)=3.912
$$

It follows from the definition of natural logs that $\ln \left(\mathrm{e}^{x}\right)=x$.

Manipulating logarithms

The following general formulae are useful and apply to logs of any base:

$$
\begin{aligned}
& \log (a b)=\log a+\log b \\
& \log \left(\frac{a}{b}\right)=\log a-\log b
\end{aligned}
$$

For example,

$$
\log \left(\frac{y z}{k m}\right)=\log y+\log z-\log k-\log m
$$

Using your calculator

We are now in a position to summarize the type of calculations you need to be able to do on your calculator in preparation for later units. You will need to be able to
1 enter numbers in standard notation form;
2 add, subtract, divide and multiply numbers;
3 square numbers and find their square roots;
4 use the calculator memory;
5 calculate $\log x, \ln x, \mathrm{e}^{x}$ and 10^{x}.
The way you carry out such calculations varies slightly according to the make of your calculator. Refer to the calculator instructions for further information - or ask a knowledgeable friend! Now try Exercise 1B.

1.3 Units

International system of units

The international system of units (usually known as SI units, from the French Système International) consists of several base units from which all other units (such as those of volume or energy) are derived. Some of the base units are shown in Table 1.1.

Because the base units are sometimes too large or too small for use, SI prefixes (Table 1.2) are used to produce smaller or bigger units. For example, the milligram

EXERCISE 1B

Quick test on calculator use
Use your calculator to evaluate the following:
(i) $\left(\frac{45.6}{2.34}\right)^{2}$
(ii) $\sqrt{300.7}$
(iii) $\log \left(1.2 \times 10^{-2}\right)$
(iv) $10^{-4.56}$
(v) $\ln (0.178 \times 8.456)$
(vi) $e^{-5.20}$
(vii) $\mathrm{e}^{-E / R T}$, where
$E=30000$,
$R=8.3145$ and
$T=298$ $(=0.001 \mathrm{~g}$, and symbolized mg$)$ is used if we are reporting small masses.

The cubic metre (written m^{3}) is too large for most purposes in chemistry, and the cubic decimetre, dm^{3} (or litre) is commonly used. There are $1000 \mathrm{dm}^{3}$ in $1 \mathrm{~m}^{3}$. Also, there are 1000 cubic centimetres $\left(\mathrm{cm}^{3}\right)$ in a cubic decimetre (see Fig. 1.1). Summarizing,

$$
1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}=1000000 \mathrm{~cm}^{3}
$$

Table 1.1 Base units

Property	Base unit	Symbol for unit
Mass	kilogram	kg
Length	metre	m
Time	second	s
Temperature	kelvin	K
Amount of substance	mole	mol

Fig. 1.1 There are $1000 \mathrm{~cm}^{3}$ in $1 \mathrm{dm}^{3}$.

EXERCISE 1C

Working with different units
(i) The radius of the hydrogen atom is approximately 40 pm (picometres). Convert this to nm (nanometres)
(ii) $1.0 \mathrm{~cm}^{3}$ of a solution contains 0.010 g of salt. What is the mass of salt contained in $1 \mathrm{dm}^{3}$ of the same solution?
(iii) The wavelength of orange-yellow light is roughly 600 nm . Express the wavelength in metres.

Table 1.2 SI prefixes

Value	Prefix	Symbol	Value	Prefix	Symbol
10^{9}, billion	giga-	G	10^{-3}	milli-	m
10^{6}, million	mega-	M	10^{-6}	micro-	μ
10^{3}, thousand	kilo-	k	10^{-9}	nano-	n
10^{-1}	deci-	d	10^{-12}	pico-	p
10^{-2}	centi-	C	10^{-15}	femto-	f

You will also meet units raised to negative powers, such as m^{-3} (read as 'per metre cubed'). Remember,

$$
\mathrm{m}^{-3}=\frac{1}{\mathrm{~m}^{3}}
$$

Now try Exercise 1C.

Amount of substance

One of the most important physical quantities in chemistry is the amount of substance, which has the unit of mole (symbol mol). The greater the number of particles (atoms, ions or molecules) in a piece of material, the greater is the amount of substance. Concentration is another physical quantity which is particularly important to chemists. Concentration is a measure of the packing of particles per unit volume, and is commonly expressed in the units of mol per dm^{3}, usually written as $\mathrm{mol} \mathrm{dm}^{-3}$. Moles and concentration are dealt with in more detail in Units 8 and 9.

Temperature

The hotness or coldness of a material is called its temperature. The units of temperature used in science are degrees Celsius (${ }^{\circ} \mathrm{C}$) or kelvin (K). For more details, see page 156.

Force and energy

The quantities of force and energy occur throughout chemistry and we will need to be familiar with their units.

The SI unit of force is the newton (N). 1 N is the force needed to give a mass of 1 kg an acceleration of $1 \mathrm{~m} \mathrm{~s}^{-2}$. (If the 1 kg mass were stationary before applying the force, this would mean that the mass would have a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$ after 1 second, $2 \mathrm{~m} \mathrm{~s}^{-1}$ after 2 seconds and so on.) The formal definition of the newton is therefore

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}
$$

The SI unit of energy is the joule (J$)$. 1 joule is the energy used up in pushing against a force of 1 newton over a distance of 1 metre. This means that we can write

$$
1 \mathrm{~J}=1 \mathrm{Nm}
$$

Units of physical quantities

A physical quantity consists of a number and a unit. For example, suppose we measure the volume of a block and find it to be $4.5 \mathrm{~cm}^{3}$:

4.5	$\mathrm{~cm}^{3}$
\uparrow	\uparrow
the number	the unit

Mathematically, the physical quantity consists of a number multiplied by a unit:

$$
\begin{equation*}
\text { physical quantity }=\text { number } \times \text { unit } \tag{1.1}
\end{equation*}
$$

In our example,

```
physical quantity (i.e. volume) = 4.5 < cm
```

For convenience, the physical quantity is usually written without the multiplication sign - here as $4.5 \mathrm{~cm}^{3}$. This may be compared with the algebraic expression $4.5 y$ (i.e. $4.5 \times y$).

Labelling axes on graphs

Suppose that we are plotting the volume of a gas (V, in dm^{3}) against the temperature of the gas (T, in kelvin, K). First, consider the y-axis. We might be tempted to label this axis as ' $V\left(\mathrm{dm}^{3}\right)$ '. However, we are not actually plotting the quantity volume but simply the number part of the quantity. Rearrangement of equation (1.1) shows that

A laboratory balance. This balance measures masses as low as 0.0001 g .

This shows that in plotting the number part we are really plotting $\frac{\text { physical quantity }}{\text { unit }}$
Hence the y-axis is labelled Volume $/ \mathrm{dm}^{3}$. This is usually written as V / dm^{3}. Similar reasoning leads to the x-axis being labelled Temperature/K or T / K.

Deriving the units of a quantity

To illustrate the derivation of the units of a quantity, consider the following question: with mass in kg and the volume in m^{3}, what are the units of density?

We start with the definition of density:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

We find the units of density by substituting the units of mass and volume into the equation defining density:

$$
\text { units of density }=\frac{\text { units of mass }}{\text { units of volume }}=\frac{\mathrm{kg}}{\mathrm{~m}^{3}}=\mathrm{kg} \mathrm{~m}^{-3}
$$

The units of density are therefore kilograms per cubic metre (see Example 1.1).

EXAMPLE 1.1

The ratio $\frac{E}{R T}$
occurs frequently in chemistry. E is an energy per mole of substance (in units of joules per mole, symbolized $\mathrm{J} \mathrm{mol}^{-1}$), T is the temperature (in K) and R is a universal constant with the units of $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ (read as joule per mole per kelvin). What are the units of $E / R T$?

Answer

$$
\text { units of } \frac{E}{R T}=\frac{\mathrm{J} \mathrm{~mol}^{-1}}{\mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \mathrm{~K}}
$$

EXERCISE 1D

Deriving units
(i) The energy (q joules) needed to raise the temperature of a material (of mass m grams) by ΔT kelvin may be calculated by the equation

$$
\begin{aligned}
& q=m \times C \\
& \times \Delta T
\end{aligned}
$$

where C is the specific heat capacity of the material. What are the units of C ?
(ii) The mass m (in grams) of an amount of substance n (in moles) is related to the molar mass M of that substance by the expression

$$
m=n \times M
$$

What are the units of M ?

EXAMPLE 1.1
 (continued)

Cancelling like units and remembering that K is really K^{+1}
$\frac{\not D \operatorname{mot}^{-1}}{\not D \text { mot }^{-1} K^{-1} K}$
so that $E / R T$ is unitless, i.e. it is simply a number.

Comment

The most commonly encountered form of this expression is $\mathrm{e}^{-E / R T}(\mathrm{e}=2.718)$. Note that as E increases, $\mathrm{e}^{-E / R T}$ decreases. Now try Exercise 1D.

1.4 Errors in experiments

Types of experimental error

Suppose we measure the temperature of a liquid. The difference between a single measurement of temperature and the true temperature is the absolute error of the measurement. The absolute error can have a positive or a negative value. Generalizing:

```
Absolute error = experimental value - true value
```

It is always good practice to repeat measurements. For example, if we are measuring the concentration of pesticide in a lake, we might fill a large bottle with lake water and later (back in the laboratory) withdraw $50 \mathrm{~cm}^{3}$ portions of the lake water from the bottle and analyse each portion for pesticide using the same analytical technique. The mean pesticide concentration is then obtained by averaging the concentrations found in each $50 \mathrm{~cm}^{3}$ portion. In this case, the absolute error in the pesticide measurements is the difference between the mean measurement and the true concentration.

There are two main kinds of error that we need to consider in experimental measurements.
1 The first type are called random errors, random because they cause repeat measurements on the same sample to go up and down.
Random errors will cause successive measurements to be scattered, although averaging a large number of such measurements will produce a mean measurement which will not be greatly affected by random error. However, repeating a measurement many times may not be practical (for example, there may be too little sample available, or the measurements might be too time consuming or expensive to carry out). It is for this reason that precise measurements are highly desirable.
2 The second type are called systematic errors. A systematic error affects all measurements, and makes all measurements either higher or lower than the 'true value'. Systematic errors do not average out, no matter how many repeat measurements are made.

Examples of random errors

Random errors are introduced whenever there is a subjective part to the experiment (such as estimating when a solution has reached the mark in a pipette, or recognizing the onset of a colour change during a titration), or where the experimental measurements are influenced by rapidly fluctuating conditions (e.g. air draughts).

Examples of systematic errors

A simple example of a systematic error is provided by a balance. Balances are often set to read a mass of zero before being used to weigh a sample. Suppose a speck of dust falls upon the pan of a balance after zeroing. This will cause the indicated mass of any object to be greater than the true mass. For example, if the speck has a mass of 0.0001 g , all objects will have an apparent mass which is 0.0001 g too high.

Another example of systematic error involves the analysis of chromium in blood. If the blood samples are stored in stainless steel vessels prior to analysis, then some chromium may dissolve out of the steel into the sample. This introduces a systematic error which causes the measurement (here the chromium concentration) to be overestimated.

Systematic errors are often difficult to recognize, particularly in measurements of the concentration of substances (quantitative analysis) in which the concentrations of materials are being found in the presence of substances which interfere with the measurement (see Box 1.1).

BOX 1.1

Example of systematic errors - the analysis of aluminium ions (Al^{3+}) in tea

One way of determining the concentration of Al^{3+} in tea is to add a complexing agent (usually a complicated organic compound) to the tea (Fig. 1.2). This combines with the Al^{3+} ion to produce a red coloured substance (a coloured complex):

$$
\begin{aligned}
& \mathrm{Al}^{3+}+\text { complexing agent } \rightarrow \mathrm{Al}^{3+} \text { complex } \\
& \text { (red colour) }
\end{aligned}
$$

The stronger the concentration of Al^{3+} in the tea, the stronger will be the intensity of the red colour.

Fig. 1.2 Determination of Al^{3+} ion by coloured complex formation.
However, if the tea contains traces of heavy metal ions (such as copper), it happens that these ions will also form red coloured compounds with the complexing agent. If we presumed that all the red colour was due to the Al^{3+} complex, this would produce a systematic error in which the Al^{3+} concentration in the tea is overestimated.

If the tea contains traces of fluoride ions (F^{-}), these ions react directly with the Al^{3+} producing stable aluminium fluoride complexes and so preventing the Al^{3+} ions from reacting with the complexing agent. This leads to a systematic error in which the Al^{3+} concentration in the tea is underestimated.

In an ideal measurement, we would separately measure the concentrations of ions ($\mathrm{F}^{-}, \mathrm{Cu}^{2+}$ etc.) which interfere with the measurements of the Al^{3+} ion, and correct the measured Al^{3+} concentration accordingly.

Accuracy and precision

Repeat measurements on the same sample which are close together are said to be precise:
Precise measurements have a small random error.
A measurement which is close to the true value is said to be accurate:
Accurate measurements have a small systematic error.

EXERCISE $1 E$

Systematic errors
In order to compare the alcohol content of several wines, a student poured samples of each wine into open test tubes and the next day analysed each for alcohol using a standard analytical technique. Comparison of the student's results with those obtained by other laboratories showed that her alcohol concentrations were consistently low. Suggest one reason for the systematic error.
(Hint: What happens to wine when it is left open to the air?)

See Extension 1 on the website, www. macmillanihe.com/ Lewis-Chemistry-5

The 'rifle shooting analogy' helps us to distinguish between accuracy and precision (Fig. 1.3). In a rifle competition, the aim is to hit the bullseye. Competitor A is a precise shot (the shots are close together) but inaccurate (no bullseye); B is a precise and accurate shot (three bullseyes); C is neither precise nor accurate.

Fig. 1.3 Accuracy and precision - the rifle shooting analogy.

We have already noted that measurements are usually repeated several times and that the random errors will be nearly completely cancelled out in the mean measurement provided that enough repeat measures are made. This is why the precision of measurements is important: the greater the precision, the fewer the number of repeat measurements that need to be made in order for the random errors to be eliminated. The fewer the repeat measurements that are required, the quicker and cheaper are the measurements.

One way of showing the precision of a set of repeat measurements is to quote the standard deviation of those results. The lower the standard deviation of a set of results, the better is the precision of those results.

What do we mean by the true value of a measurement?

If a measurement is accurate, it must give a true value. But how do we know the true value? If we are using a new analytical instrument which detects lead, we might test the accuracy of the instrument by analysing solutions whose lead concentrations [Pb] are known (i.e. standard solutions). If the analysis is accurate, the difference

$$
[\mathrm{Pb}]_{\text {standard }}^{\text {in }}-[\mathrm{Pb}]_{\text {instrument }}^{\text {found }}
$$

should be close to zero. If we are analysing mixtures where the true concentrations are unknown, the absence of systematic errors is essential if we are to have faith in the final result. In such cases, accuracy may be estimated by comparing the results of different analytical methods for the same sample.

Professional organizations (such as the British Standards Institute) often publish the most reliable analytical methods in the form of standard methods, in which the likely sources of experimental error are highlighted.

Quality of analytical measurements in laboratories

Chemical analysis is a multi-billion dollar business in all industrialized countries, involving thousands of highly skilled scientists and technicians. Poor quality analysis is a barrier to international trade, technological advancement and the development of government policies such as health and safety. For example, unless the concentrations of pollutants can be reliably and accurately measured, regulations based on the highest permissible concentration of an airborne pollutant are unenforceable.

Analytical chemists distinguish between an analytical technique and an analytical method. The analytical technique used to take the measurement itself (such as gas chromatography or ultra-violet spectroscopy) is one part of a 'recipe' of operations that make up an analytical method. The analytical method may include details of sample preparation and how interference from other substances can be minimized. If the method is recognized by a national or international professional body it is called a standard analytical method.

Quality control is very important in analytical laboratories, so that customers know that they can rely upon the results of any analysis.

1.5 Reporting measurements

Significant figures and measurement uncertainty

If we asked someone to measure the length of a piece of wire with a standard ruler and they reported its length as 19.843 cm , we would have every right to be sceptical: 19.843 contains five significant figures, a number of figures that cannot be justified when we are using a ruler.

We might estimate the uncertainty in the length measurement as $\pm 0.2 \mathrm{~cm}$. This means that the measurement is at worst 0.2 cm too high or 0.2 cm too low. It follows that we are justified only in including the first decimal place of the measurement and we then report the length as $19.8 \pm 0.2 \mathrm{~cm}$. Alternatively, we might report the measurement as simply 19.8 cm , a number which contains three significant figures. Neglecting the $\pm 0.2 \mathrm{~cm}$ is less informative, but because of an agreement between scientists about the meaning of significant figures, even simply writing 19.8 cm carries with it some information about the minimum uncertainties involved in the measurement.

To explain this further, suppose that you report the length of the wire to a friend as 19.8 cm but provide no further information. What could your friend say about the likely uncertainties in the measurement? By general agreement, it is assumed that the uncertainty in the measurement is equal to at least one digit in the last significant figure. In our example, reporting the length as 19.8 cm implies that the total uncertainty in the measurement is equal to at least one digit in the first decimal place. In other
words, the minimum uncertainty is $\pm 0.1 \mathrm{~cm}$. As we have seen, the actual uncertainty is estimated to be greater, as $\pm 0.2 \mathrm{~cm}$.

In order to report the correct number of significant figures in a measurement, an estimate of the uncertainties is obviously required. Sometimes this will be nothing more than an informed guess of the likely effect of random errors. In more sophisticated measurements, further experiments may need to be carried out in order to assess the importance of both random and systematic errors.

What is the connection between uncertainty and absolute error? In the above examples, the uncertainty (the \pm part) is an estimate of the range of the absolute error that is likely to apply to the reported measurement. For example, suppose the uncertainty is $\pm 0.2 \mathrm{~cm}$. This is equivalent to saying that the absolute error in the reported measurement is between 0.2 cm above the measurement and 0.2 cm below the measurement.

EXAMPLE 1.2

The mass of a coin is displayed on a balance as 10.0078 g . The uncertainty of this measurement is estimated as $\pm 0.002 \mathrm{~g}$. How many significant figures are we justified in using when reporting the mass of the coin?

Answer

The uncertainty shows that three decimal places can be justified in the measurement. This means that we are justified in reporting the mass of the coin to five significant figures, i.e. as 10.008 g . This implies that the minimum uncertainty in the measurement is $\pm 0.001 \mathrm{~g}$.

BOX 1.2

Recognizing the number of significant figures
The easiest way to recognize the number of significant figures in a number is to express the number in standard notation and count the number of digits (including zeros) in the number that multiplies the 10^{\times}part. For example, 0.00233 becomes 2.33×10^{-3} in standard notation. Since there are three digits in 2.33 the number of significant figures is three. Other examples are as follows:

Number	Standard notation	Number of significant figures
0.002330	2.330×10^{-3}	4
235.5	2.355×10^{2}	4
0.0000567676	5.67676×10^{-5}	6
14	1.4×10^{1}	2
1302	1.302×10^{3}	4
150	1.50×10^{2} or 1.5×10^{2}	3 or 2

The number of significant figures in the number 150 is ambiguous. If we mean 1.50×10^{2}, then there are three significant figures. If we mean 1.5×10^{2} then there are only two significant figures.

Number of significant figures in a quantity calculated by multiplication or division

Suppose we carry out an experiment to find the density of a lump of metal. We require two measurements, namely: (i) the mass of the metal and (ii) its volume. Suppose the
mass of the metal was reported as 10.0078 g whereas the volume of the metal (which is more difficult to determine accurately) was reported as $2.8 \mathrm{~cm}^{3}$. The density is now calculated as

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{10.0078}{2.8}=3.57421429 \mathrm{~g} \mathrm{~cm}^{-3}
$$

where the number 3.57421429 is the one that might be displayed on a calculator. It is absurd to report the density as $3.57421429 \mathrm{~g} \mathrm{~cm}^{-3}$, since this would suggest an uncertainty of about $\pm 0.00000001 \mathrm{~g} \mathrm{~cm}^{-3}$! Again, there is a rule to guide us: the number of significant figures in the final calculated figure is set equal to the number of significant figures in the most uncertain contributing measurement. The density calculation depends upon measurements of volume and mass, but the volume measurement was only reported to two significant figures and is therefore the most uncertain of the two measurements. Accordingly, the density should also be reported to two significant figures:

$$
\text { density }=3.6 \mathrm{~g} \mathrm{~cm}^{-3}
$$

(where the $\mathbf{5}$ of the 3.57421429 is rounded up to $\mathbf{6}$ as explained in Box 1.3).

Number of significant figures in a quantity calculated by addition or subtraction

The rule here is that the number of decimal places in the final calculated figure is set equal to the smallest number of decimal places in the contributing measurements.

As an example, consider two different samples of water whose volumes were determined by two different methods as $41.66 \mathrm{~cm}^{3}$ and $2.1 \mathrm{~cm}^{3}$, respectively. Following the rule, and rounding up, the total volume is reported as $43.8 \mathrm{~cm}^{3}$.

BOX 1.3

Rounding up

Suppose the mass of a coin is incorrectly reported as 5.6489 g (i.e. five significant figures), and that the uncertainties involved only justify the use of four significant figures. This means that we must round up to the fourth significant figure.

The rules we use are:
1 In considering the rounding up of the nth significant figure, we consider the next (i.e. the ($n+1$)th) significant figure only.
2 The nth significant figure is only rounded up if the $(n+1)$ th figure is equal to or greater than 5.
So, rounding 5.6489 g (five significant figures) to four significant figures gives 5.649 g . However, if we wanted to report the mass of 5.6489 g to three significant figures our mass becomes 5.65 g , with the fourth significant figure (5.6489) causing the 4 to round up to 5 and the fifth significant figure having no part to play. If we wanted to report the original mass to two significant figures, we go from 5.6489 to 5.6 because 4 is not equal to or greater than 5 and the other original figures (the 8 and 9 in 5.6489) are irrelevant. Finally, the original mass becomes 6 g when expressed to one significant figure with the 6 in 5.6489 causing rounding up. In summary:

Coin mass	Number of significant figures
5.6489	5
5.649	4
5.65	3
5.6	2
6	1

EXERCISE 1F

Significant figures and rounding up

(i) How many significant figures are present in the following numbers: (a) 0.02 , (b) 20.02, (c) 890 , (d) 0.00765 ?
(ii) The atomic mass of the oxygen-16 atom is 15.9949 atomic mass units, but a student uses an approximate value of 16.10 . Is this justified?
(iii) Round up 0.03467 to (a) three significant figures, (b) two significant figures and (c) one significant figure.

Number of significant figures in a logarithmic quantity

The \log of 1.97×10^{3} is 3.294466 , but how many decimal places should the answer contain? The rule here is that the number of decimal places in the answer is equal to the number of significant figures in the initial number: 1.97×10^{3} contains three significant figures, so $\log \left(1.97 \times 10^{3}\right)=3.294$.

The reverse also applies. If we wish to find the number whose \log is 0.8234 , we calculate $10^{0.8234}$, which is 6.65886 . The number of significant figures in the answer equals the number of decimal places in the initial number, so that $10^{0.8234}=6.659$.

Quantities are often expressed in logarithmic form so as to compress them and make very big or very small numbers more manageable. An example is found in the quantity known as pH , which is calculated from the hydrogen ion concentration (symbolized $\left.\left[\mathrm{H}^{+}(\mathrm{aq})\right]\right)$ in a solution by the equation:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]
$$

This equation is read as ' pH equals the negative of the \log of the hydrogen ion concentration. The reverse of this equation is

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1 \times 10^{-\mathrm{pH}}
$$

read as 'the hydrogen ion concentration equals 10 to the power of the negative of the pH value.'

Applying the rules of significant figures, if the hydrogen ion concentration is $4.403 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ then

$$
\mathrm{pH}=-\log \left(4.403 \times 10^{-3}\right)=-(-2.35625)=2.35625=2.3563
$$

i.e. four decimal places and rounded up.

If the pH of a solution was expressed as 6.81 then

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left(\text { in } \mathrm{mol} \mathrm{dm}{ }^{-3}\right)=1 \times 10^{-\mathrm{pH}}=1 \times 10^{-6.81}=1.5488 \times 10^{-7}=1.5 \times 10^{-7}
$$

i.e. two significant figures and rounded down.

Further examples of pH calculations are found in Unit 9 (page 152) and in Unit 17 (page 298).

EXERCISE 19

Examples of the use of significant figures

(i) Significant figures in multiplication

The concentration of hydrogen ions in a solution was calculated using the equation $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\sqrt{2.04 \times 10^{-8} \times \mathrm{c}} \quad \mathrm{moldm}^{-3}$
Experiments show that c has a mean value of 0.0108 . Only two significant figures are justified in c. Report $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ to the correct number of significant figures.
(ii) Significant figures in addition

The mass of metals in a sample of waste water was determined by analysis to be as follows: $\mathrm{Cu}^{2+} 0.132 \mathrm{mg}, \mathrm{Pb}^{2+} 0.3 \mathrm{mg}, \mathrm{Zn}^{2+} 10.00 \mathrm{mg}$. What is the total mass of metal present?
(iii) Significant figures in logarithmic quantities

The $\mathrm{p} K_{\mathrm{a}}$ of an acid is calculated by the equation:

$$
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}
$$

where K_{a} is the acidity constant of the acid. At $25^{\circ} \mathrm{C}$, the K_{a} value of ethanoic acid is $8.4 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the $\mathrm{p} K_{\mathrm{a}}$ of ethanoic acid.

REVISION QUESTIONS

Questions 1.1 to 1.4 are multiple choice questions. Select the correct answer.
1.1 The temperature of a liquid is reported as $25.0 \pm 0.5^{\circ} \mathrm{C}$.

The 0.5 represents the estimated:
(a) Precision of the measurement
(b) Accuracy of the measurement
(c) Type of error in the measurement
(d) Uncertainty in the measurement
1.2 The concentration of calcium in water may be determined by atomic absorption spectrometry (AAS), in which the aqueous solution is sprayed into a flame which breaks down the calcium compounds into atoms. However, if phosphate ions $\left(\mathrm{PO}_{4}^{3-}\right)$ are present in the sample, they bind the calcium as calcium phosphate, which resists atomization in the flame. Therefore, the presence of phosphate in the sample causes the measured calcium concentration to be:
(a) Underestimated, causing a random error in the measurement
(b) Underestimated, causing a systematic error in the measurement
(c) Overestimated, causing a systematic error in the measurement
(d) Overestimated, causing a random error in the measurement
1.3 Measurements which are precise will always have a:
(a) Large systematic error
(b) Small systematic error
(c) Large random error
(d) Small random error
1.4 A solution containing exactly 10.0 ppm (parts per million) of manganese ion (Mn^{2+}) is sent to a laboratory to test the quality of its measurements. The lab analysed three samples of the solution, obtaining the following results:

Sample number	$\left[\mathrm{Mn}^{2+}\right] / \mathrm{ppm}$
1	10.0
2	10.5
3	11.0

The absolute error in the mean measurement is:
(a) 0.0 ppm
(b) 0.5 ppm
(c) 1.0 ppm
(d) 21.5 ppm
1.5 The radii of several atoms and ions (in different units) are as follows: $\mathrm{Cr}^{3+} 0.069 \mathrm{~nm}, \mathrm{~F}^{-} 1.36 \times 10^{-6} \mathrm{~cm}$, O $1.40 \times 10^{-5} \mathrm{~mm}$. Express the radii in metres and arrange the particles in order of increasing size.
1.6 The temperature of a water bath was reported as $27.1^{\circ} \mathrm{C}$. What does the number of significant figures tell you about the minimum uncertainty involved in this measurement?
1.7 Report the following measurements to four significant figures:
(i) 0.12347 V ,
(ii) 12.45 m ,
(iii) 0.00355757 cm ,
(iv) 1200.5 K .
1.8 Calculate $e^{-E / R T}$ (with $E=20000 \mathrm{~J} \mathrm{~mol}^{-1}$ and $R=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$) at
(i) $T=300 \mathrm{~K}$ and
(ii) $T=3000 \mathrm{~K}$.

In each case, express the result to three significant figures.
1.9 A pain killing tablet contains 154 mg caffeine, 101 mg aspirin and 0.23 g filler. Express the total mass of the tablet (in grams) to the correct number of significant figures.
1.10 The ionic product of an aqueous solution (a solution with water as the solvent), symbolized K_{w} is defined by the equation

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right] \times\left[\mathrm{OH}^{-}\right]
$$

where the brackets denote the concentrations (in mol dm ${ }^{-3}$) of $\mathrm{H}^{+}(\mathrm{aq})$ and OH^{-}ions at that temperature. What are the units of K_{w} ? Calculate K_{w} for a solution at $25^{\circ} \mathrm{C}$ if $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=$ $5 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. Express your answer to the correct number of significant figures.
1.11 In spectroscopy, the absorbance (A) of a solution of a substance is defined by the expression

$$
A=\varepsilon \times c \times b
$$

where ε (pronounced epsilon) is the molar absorption coefficient of the substance, c the concentration of the substance (in moles per metre cubed) and b the thickness of the sample (in metres); A is unitless. What are the units of ε ?
1.12 Label the following as random or systematic errors:
(i) The variation of the mass recorded by a balance because of air draughts in the laboratory.
(ii) A thermostat in a water bath that registers $30^{\circ} \mathrm{C}$ when the real temperature of the water is $25^{\circ} \mathrm{C}$.
(iii) The leaking of a gas cell which is being used to hold a sample of gas so that its pressure can be measured.
1.13
(i) The hydrogen ion concentration of a solution is $8.987 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the pH of the solution.
(ii) The pH of a solution was 11.344. Calculate the hydrogen ion concentration of the solution.

DID YOU KNOW?

Celsius and his temperature scale

The Centigrade temperature scale, as its name suggests, consists of 100 degrees between the two 'fixed points'. It was first proposed by the Swedish scientist Anders Celsius in 1742. Celsius suggested that $0^{\circ} \mathrm{C}$ should be the temperature of boiling water and $100^{\circ} \mathrm{C}$ should be the freezing point of water. The scale was reversed after his death to the current version with the boiling point of water being set at $100^{\circ} \mathrm{C}$ and the freezing point of water at $0^{\circ} \mathrm{C}$. To avoid confusion with the SI prefix centi- and in honour of the discoverer, the temperature was renamed the Celsius scale in 1948.

Additional material to support this unit is available on our website at www. macmillanihe.com/Lewis-Chemistry-5. See Extension 1: Numbers, units and measurement. This includes more about the relative sizes of quantities, the use of standard deviation in interpreting the results of analysis and examples (in preparation for other units) of the use of the equation for a straight line.

Index

Page numbers followed by T or B denote tables or boxes, respectively. Entries followed by G are to be found in the Glossary
absolute zero, 156B, 495G
absolute error, 6, 495G
absorbance, 392, 406, 495G
units of, 407
abundance of isotope, 33T, 34, 495G
adsorbant, in chromatography, 382
absorption, and adsorption, 165
accuracy, 7, 8, 495G
acetaldehyde, see ethanal
acetic acid, see ethanoic acid
acetylene, see ethyne
acid, 91, 301-302, 495G
acid chloride, $341 \mathrm{~T}, 351$
acid mine drainage, 435
acid-base indicators, $88,312,313 \mathrm{~T}$
acidic hydrogen, 91, 303T
acidic oxides from non-metals, 17
acidic properties, 92
acidic solution, definition of, 299, 495G
acidity, 301
acidity constant, 302, 303T, 495G
acids and reactions of, 87-91
diprotic, 305
percentage ionization in, 303-304
strong, 301
weak, 302
actinoids, 195
activation energy, 244, 246B, 249B, 495G
activity series of metals, 114, 115 T
acyl group, 351, 337
acylation of benzene, 337
addition reaction, $331,334,495 \mathrm{G}$ of benzene, 337
adsorption of gases, 165
air, 162T
alanine, 356T
alcohol, abuse of, 443T
alcohol in blood, 443-444
measurement in blood, 108B, 443-444
alcohol in blood, units of, 444 T
alcohols, 495G
as solvents, 344
chemical properties of, 345
classification of, 343, 345
oxidation of, 345
table of, 343T
alcolyser, see breathalyser alcometer, see breathalyser aldehydes, 346-347, 495G aliphatic hydrocarbons, 335
alkali metals, see also Group 1 elements, 195
alkaline, 299, 495G
alkaline earth metals, 197, 495G, see also Group 2 elements
alkaline solution, 299, 495G
alkalis, 92
alkanes, 318-324, 495G
reactions of, 326-327
alkenes, 327-333, 495G
addition, mechanism of, 364
bonding in, 333B
isomerism in, 328-329
alkyl halides, see halogenoalkanes
alkylation of benzene, 336
alkynes, 333-334, 495G
allotropes, 74, 75B, 495G
of carbon, 74
of oxygen, 75B
of phosphorus, 75B
of sulfur, 75B
of tin, 200B
alloys, 28, 206
alpha helix, 357-358
alpha particles, 422T, 424, 495G
use by Rutherford, 30
aluminium in drinking water, 148
aluminium ion, reactions of, 96-97
amalgams, 28
amide, $341 \mathrm{~T}, 351$
amines, 341T, 352, 495G
basic properties, 95,353
amino acids, 356T
ammonia, 90
as a weak base, $91,303 \mathrm{~T}, 306$
dissolution in water, 90
Haber-Bosch process, 118, 277-278
ammonium chloride, 377, 285
ammonium cyanate, 318
ammonium ion, tests for, 91
amount of substance, 4, 121-122
aminobenzene, see aniline
Amphetamine, 440
amphoteric substance, 97, 213, 495G
Armstrong, Henry Edward, 371
anaesthetic, 342
anhydride, 351
anhydrous, 129
aniline, 359
anions, 83
anode, 111, 495G
anthracene, 338
antibiotic, 451
antifreeze, 344
antiseptics, 58B
aralkyl groups, 360
arenes, 338
argon, see Group 18 elements
aromatic hydrocarbons, 335
aromaticity, 369
aromatic compound, 495G
aromatic compounds in oil, 337
Arrhenius equation, 249B
aryl group, 336, 495G
astatine, see Group 17 elements
atmosphere, unit, 159B, 495G
atoms, 21, 30, 495G
atomic absorption spectrometer, 394, 440T
atomic mass of an element, 34, 495G
atomic mass scale/unit, 31, 496G
atomic number, 31, 496G
atomic radius of s-block elements, 199
ATP/ADP, 291
autoignition temperature, 463
autoionization constant, 297
Avogadro, life of, 135
Avogadro's law (principle), 135, 161, 495G
Avogadro's constant, 122, 495G experiment to estimate value, 126
axes of graphs, labelling of, 5
azo compounds, 359

Baeyer test, 332
bicarbonate, 93-94, 95
balance, analytical, 5
Balmer series, 395
barium, see Group 2 elements
barium chloride, use in tests, 90
base, $92,306,303 \mathrm{~B}, 495 \mathrm{G}$
basic oxides from metals, 17 basic solution definition, 299 basicity constant, 306, 495B Becquerel, Antoine Henry, 421

Beer-Lambert law, 406-408, 495G benzene
bonding and structure, 335, 340
infrared spectrum of, 404
numbering substituents of, 338
properties of, 336-337
substitution mechanisms, 366-367
benzoic acid, 303T, 349T, 317
benzyl alcohol, 360
benzyl compounds, 360
beryllium, 65
bonding in compounds, 66
see also Group 2 elements
beta particles, $422 \mathrm{~T}, 423 \mathrm{~T}, 424$, 496G
bicarbonates, 93, 94, 95
bidentate ligand, 209
BAC (blood alcohol concentration), 442, 444T, 496G
Bohr model of atom, 39
Bohr radius, 39, 45
boiling, 158
boiling point, 158, 167, 496G
of hydrides, including water, 80 B
bomb calorimeter, 228
bond enthalpy, 235, 236T, 496G
bonding, 48
coordinate, 58
covalent, 54
hydrogen, 78
ionic, 49
metallic, 74
bonding pair, 69 and molecular shape, 69 T
bonds
between atoms, 48
energetics of, 235-237
multiple, 56
polarity in, 59
relationship between length and strength, 236
relationship between type and strength, 236
boron, bonding in compounds, 66
Bosch, Carl, 277
Boyle's law, 160
breathalyser, 108B
bromides, test for, 89
bromine, see Group 17 elements
bromopropane hydrolysis mechanism and transition state, 246
brown ring test, 90
Buchner funnel, 373B
buckminsterfullerene, 75-76
bucky ball, see buckminsterfullerene
buffer capacity, 311
buffer solutions, 308, 496G
calculation of pH in, 310-311
Bunsen, Robert, 458
burette, 143
but-1-ene, formula, 328
butane, formula, 319T
caesium, see Group 1 elements
Cahn-Ingold -Prelog rules, 329
caffeine, 381
calcium hydroxide, dissolution of, 92
calculators, use of, 3
carbocations, 365
carbohydrates, 349
carbon
use in adsorption, 166
see also Group 14 elements
carbon dioxide
and exercise, 229
buffering action of, 315
phase diagram, 172
production, in combustion, 461
solubility in water, $95,186 \mathrm{~T}$, 188
sublimation and dry ice, 201
supercritical, 381
carbon monoxide,
in combustion, 461
toxicity, 210
carbon tetrachloride, see tetrachloromethane
carbonates, reactions with acids, 93
carbonic acid, 303 T
carbonyl compounds, 345
infrared absorption of, 403
carboxylic acids, 496G
acid strengths, 350, 303T
infrared absorptions in, 403
reactions of, 350
table of, 349T
carvone, 346
catalysis/catalyst, 246, 258-260, 496G
catechol, 358
catenation, 200, 318
elements other than carbon, 200
cathode, 111, 496G
cations, 83
cell
diagram, 111
dry, 113
electrochemical, 110
potential, 110
to measure electrode potentials, 110
cellulose, 349B
and photosynthesis, 409
hydrogen bonding in, 80
Celsius scale, 156
centrifuge, 373
CFCs, 431
chain reaction, 257, 456, 461, 496G
chalcogens, 194
changes in state (phase), 156-159
Charles' law, 159
chelate, 210
chemical change, see chemical reaction, 19
chemical equilibrium, 262
and equilibrium law, 264
and Gibbs energy change, 286
and rate constants, 265
calculation from standard
Gibbs energy change, 289
dynamic nature of, 262-263
effect of changing conditions, 269-273, 275
chemical formulae, 21
chemical kinetics, 239
chemical oxygen demand, see COD
chemical shifts (NMR), 411
chemiluminescence, $397,496 \mathrm{G}$
Chernobyl, 427

Chimney (Stack) effect, 459
chiral centre, 353
chloride test for, 88
chlorination of water, 434
chlorine, see Group 17 elements
chloroalkanes, $341 \mathrm{~T}, 342$
chlorofluorocarbon compounds, see CFCs
chloroform, 342
chlorophyll, 409
Christie, Agatha, 445
chromatogram, 381
chromatography, 381-385, 496G
column, 382
gas, 384
GC-MS, 385, 38
paper, 382
thin-layer, 383
chromium, see first transition series
cis-platin, 453
coal, 325
coal gas, 325, 465
coal tar, 325,465
Coanda effect, 467
cobalt, see first transition series
COD, 435
coke, 325
colloid, 191, 496G
colour and colour cheese, 398-399
combustion, 326, 228, 228 T
complete/incomplete, 326,461
enthalpy change in, 228, 236, 462
of alkanes, 326, 327, 462
of alkenes, 331
of benzene, 336
common ion effect, 182, 496G
complex/complex ions, 207, 496G
naming of, 208B
complexing agent, 7B
compounds, definition, 16, 496G
concentration
as mole fraction, 151
as percentage composition, 151
molar, 137
of ions, 139
parts per billion, 148
parts per million, 148
pure solids and liquids, 139B
condensation, 156
condensation reaction, 348
condenser, 376
conduction of ionic salts, 53
conjugate acid, 306, 496G
conjugate base, $303,496 \mathrm{G}$
conservation of energy, 215
conservation of mass, 19
cooling packs, 217
cooling curve, 158
coordinate bonding, 58
coordination number, 208, 496G
copper, see first transition series
copper ions, reaction with hydroxide, 96
corrosion, rusting, 115, 247
covalent compounds
bonding in, 54, 57B
properties of, 57
cracking, 324
Crick, Francis., 80
critical pressure, 169, 496G
critical temperature, 169, 496G
crystalline structure of metals, 74
crystallization, 374
cumene, 358
Curie, Marie, 375B, 421
Curl, Robert, 76
cycloalkanes, 325B
cytochromes, 118

Dalton, John, 27B
law of partial pressures, 161
dative bonding, see coordinate bonding
Davy Lamp, 466
d-block elements, 195, 206-209 see also transition metals
decane, isomers of, 321
decay constant in radioactivity, 426, 496G
degenerate, 207
dehydration, 129
deionized water, 378, 496G
delocalization, 61, 496G
in benzene, 335B
and semiconductors, 202
denatured, 80
denatured alcohol, 345
density, 5, 496G
detergency and detergents, 177, 178B
deuterium, 32, 33T
Devarda's alloy, 117B
diamagnetic, 206
diamond, 75
diatomic molecules, 18, 496G
diazepam (valium), 453
diazonium salt, 359
dichromate, 107
spectrum of , 400
use in old breathalysers, 108B
use in oxidising organic compounds, 347
use in redox titrations, 145-144
diffusion, 157
dinitrophenylhydrazine $(2,4)$, 348
diol, 343
dipeptide, 356
diphenylamine indicator, 144
dipolar ion, 356
dipole, 72-73, 496G
measurement of, 72B
temporary, 77
direct blue, 359
disaccharides, 349
dissociation, 496G
dissociation constant, see acidity and basicity constants
dissolution, 83
dynamic nature of, 179
dissolved oxygen, 186T, 187
importance of, 435
distillate, 376
distillation, 375, 496G
distribution ratio, 184
in multiple solvent extractions, 381
DNA, 80

DNPH, 348
d-orbitals, 45-46
degeneracy and transition metal ions, 207
double bond in alkenes, 327 , 333B
double helix in DNA, 80
drinking water quality, 434
drugs
making drugs more water soluble, 177
uses to save lives, 448
dry ice, 201
ductile, 17
dyes, 359
dynamic equilibrium, 262

E

EDTA, 210
and equilibrium constants, 268
eicosane, isomers of, 321
electrochemical cell, see also cell, 496G
electrode, 496G
electromagnetic radiation, see light
electron density
in hydrogen, 57
in hydrogen fluoride, 73
in sodium chloride, 52B
electronegativity, 59B, 496G
electronic spectra, 390, 396-397
electronic structure of atoms of elements, $40,41 \mathrm{~T}$
electron/electrons, 30, 31T, 496G
wave nature, 44
electrophile, 363
electrostatic forces, 52
elemental analysis, 334
elementary reaction, 257, 496G
elements, 16-17, 496G
standard and reference states, 217
elute, 382
emission of light, 496G
emission spectra, 42, 390, 393
and colour of flame, 458
of hydrogen atom, 394 of sodium atom, 396
empirical formula, 127, 496G
emulsification, 177
emulsions, 496G
emulsifying agent, 496G
enantiomers, 353
endothermic reaction, $216,496 \mathrm{G}$
and activation energy, 246B
endpoint, 142, 496G
in acid-base titrations, 313-315
energy, 4, 215
electronic and vibrational energy, 390
energy value of fuel, 228, 496G
enthalpy, 215, 496G
enthalpy of atomisation, 224, 233
enthalpy of electron gain, 224, 496G
lattice enthalpy, 224, 231
of formation, 225
of fusion, 224, 497G
of ionisation, 224, 233
of neutralization, 224, 304
of vaporization, 224, 497G
special kinds of enthalpy change, 224 types of enthalpy change, 224
entropy, 282-283, 497G
entropy and disorder, 283
entropy change, 284
enzymes, 246-247
Epsom salts, 129
equations
calculating amounts from, 129
ionic, 84
redox, 102, 106
thermochemical, 216
writing and balancing, 24
equilibrium, see also chemical equilibrium, 497G
equilibrium composition, 269-270, 497G
equilibrium constants, 264, 497G
and catalysts, 274
and Gibbs energy change, 289
and rate constants, 265
effect of altering conditions upon, 269
in terms of pressure, 265
meaning of, 266
table of, 267T
variation with temperature, 272, 274B
equilibrium law, 264
application to physical equilibria, 279
equilibrium reaction, 91
equivalence point, 313, 497G
error
random, 6
systematic, 6
esterification, 350-351
equilibrium and, 270-271
spontaneous reaction and, 282
esters, 350
infrared absorptions in, 403
ethanal, 341T, 346
ethane, formula, 319T
ethanoic acid, 91, 249T
as a weak acid, 303 T
calculation of $\mathrm{pH}, 304$
infrared absorptions in, 403, 405
reactions of, 350-351
ethanol, 344
infared absorptions in , 404, 405
reactions of, 345
vapour pressure of, 167
ethene, 327, 328T
reactions of, 330-331
ethers, 341T
ethoxyethane as a solvent for extraction, 378-379
flashpoint and autoignition temperature, 169T
ethyl mercaptan, 326
ethylene glycol, 343
ethylenediamine, see EDTA
ethyne, 333
eutrophication, 434
evaporation, 156-157
excited state, $390,497 \mathrm{G}$
and colour in flames, 458
exothermic reaction, $216,497 \mathrm{G}$
explosion/explosives, 231, 497G
extensive property, description of, 218, 497G
exhaust gases, infrared of, 434
fats, 352B
fatty acids, 351
Fehling's solution, 347
fermentation, 344
ferromagnetic, 206
filter paper, folding, 373
filtrate, 372
filtration, 372
gravity, 372
vacuum, 373
fire, 456
first-order reactions, 248
finding order of, 251-252
first-order decay, 497G
half life and, 254-256
flame, 457
flame attachment, 467
flame colours, of Group 1 elements, 196T
flame tests, 97, 196T, 198T
and emission spectra of sodium, 396
flammability, 169
and flammability limits, 463 T
Faraday, Michael, 459B
flash point, 169T, 463T
fluorescence, 397, 497G
fluorine, see Group 17 elements
foods, energy values of, 228T, 229
force, 4
formaldehyde, 346
formalin, 346
formic acid, 349
formula, 21
determination by experiment, 126
formula mass, see molecular mass
formulae, constructing, 21 fossil fuel,
and pollution, 432
fracking, 437, 497G
fractional distillation, 375-376, 324
fractionating column, 376
fractionation of oil, 324
francium, see Group 1 elements
free energy, see Gibbs energy
free radicals, 257
and chlorination of methane, 257, 363
and flames, 460-461
and ozone, 431
freezing, 156
freezing point, 158, 497G
frequency, 388, 497G
Friedel-Craft reaction, 337
fructose, 349B
fuel cell,
to measure alcohol vapour, 108
fuels, energetics of, 228, 462, 236-237
functional groups table, 341T
fused ring compounds, 338
gallium, 213
galvanizing/galvanization, 116
gamma radiation, 422T, 423, 425, 497G
gas masks, 166

GC, 384
GC-MS, 385, 440
germanium, see Group 14 elements
Gibbs energy (Gibbs Free
Energy), 285
and equilibrium constant,
289-290, 290T
and protein folding, 293B
and spontaneous reactions, 285
calculation of, 292
standard Gibbs energy change, 289
variation with temperature, 292
glucose, 344, 349B
for energy in the body, 118
glycerol, 352B
glycine, 356, 356T
glycogen, 349B
glycol, 343
graphite, 75
gravimetric analysis, 147
gravity filtration, see filtration
greenhouse effect, 433
ground state, 390, 497G
Group 18 elements, 205
Group 1 elements, 195
Group 2 elements, 197
Group 14 elements, 199

Group 17 elements, 203
Groups in periodic table, 194-195
gunpowder, 231
H, see enthalpy
Haber-Bosch process, 118, 277
optimizing conditions for, 278
Haber, Fritz, 277
haemoglobin, 210
half-life, 254-255, 497G
and drugs, 441
and degradation of insecticide, 256
and radionuclides, 256,426
halogenation
of benzene, 336
chlorination of methane, 257, 326, 363
halogenoalkanes, 326
halogens, see Group 17 elements, 497G
hard water, 198-199, 497G
and ion exchange, 378
hardening fats, 352B
hardness of water, see hard water
heating and cooling curves, 158
heavy metals in water, 432B
helium, see Group 18 elements
Henderson-Hasselbalch equation, $311-312$
Henry's law, 186, 497G
Henry's law constants, 186T
Hess's Law, 219
use in calculating enthalpy changes, 221
heterogeneous catalysis, 258
heterolytic fission, 363
hydrofluorocarbons (HFCs), 431, 433
Hindenburg, 94
Hiroshima, 421
homologous series, 319
homolytic fission, 363
hormones, 357
Hund's rule, 47
hydrated, 83
hydration
of inorganic compounds, 129, 497G
of ethene, 331
hydrazine, 348
hydrazones, 336
hydrocarbons, 319
combustion of, 460-461
energy density of, 228T
IR spectrum of petrol exhaust, 434
hydrochloric acid, 87-88
hydrogen
explosion of, 94
flash point and autoigition temperature, 463T
isotopes of, 32, 33 T
hydrogen atom, emission spectrum of, 394-395
hydrogen bonding
amines with water, 353
carbonyl group with water, 346
effect of temperature upon, 273
in alcohols, 343
in carboxylic acids, 350
see also bonding
hydrogen chloride
fountain experiment, 189
IR spectrum of, 401
reaction with water, 87
hydrogen iodide, energetics of formation, 220
hydrogen ion, 54B, 87, 298
hydrogen peroxide, rate of decomposition, 242
hydrogen sulfide, from sulfides, 95
hydrogencarbonates, reactions of, 94
hydrolysis
of esters, 351
of Group 14 tetrachlorides, 202
of haloalkanes, 342
of salts, 307
hydronium ion, 54B, 87, 298
hydrophilic group, 177, 497G
hydrophobic group, 177, 497G
hydroxide ion, reactions of, 96-97
hydroxides, precipitation of, 96

I
ice, arrangement of molecules in, 79B
ideal gas
behaviour, deviations from, 164
equation, 163
immiscibility, 174
immiscible liquids, $375,497 \mathrm{G}$
vapour pressure of, 377
indicator
ferroin, 145
redox, 144
self, 144
to determine endpoint, 142
indicators, see acid-base indicators
induced dipole, 77
inductive effect, 353
inert gases, see noble gases
inert pair effect, 201, 202B
infrared spectra/spectroscopy, 400
initial rate method, 250
inititation, 364
insoluble, 372
insulators, 202
intensive property,
description of, 19, 497G
intermolecular bonding, 76, 81B
intermolecular forces, 57,76 , 497G
intramolecular bonding, 76, 81B
iodides, test for, 204
iodine
${ }^{131}$ I radionuclide, 423
see also Group 17 elements
solid structure, 77B
ion exchange, $378,497 \mathrm{G}$
to soften water, 199B
ionic compounds, 50
properties of, 53
when likely to occur, 54
ionic equations, 84
ionic micelles, 192
ionic product constant, 497G
ionic radius of s-block elements, 199
ionization, 35, 497G
ionization constant, see acidity constant
ionization energy, 40, 54, 497G
across a period, 212
of Group 1 elements, 196
ionisation enthalpies, see ionization energies
ions, 50B
iron, see first transition series
iron pyrites, 435
iron(II) ions, reactions of, 96
iron(III) ions, reactions of, 96
island of stability, 214B
isoelectronic, 211
isomerism
E-Z system, 329
geometric, 329
optical, 353
naming optical isomers, 354-355
structural, 330B
isomers
aldehydes and ketones, 346
of chloropropane, 326
structural, 321
isotopes, 32, 33T, 497G
natural abundance of, 33, 34
isotopic mass, $33,497 \mathrm{G}$

Kekulé structures, 335
Kekulé, F, 338B
keratin, 357
ketones, 346-347
kinetic molecular theory, 155
of gases, 162-163

Kroto, Harry, 76
krypton, see Group 18 elements

L

lanthanoids, 195
lattice enthalpy, 231, 497G
law of conservation of mass, see conservation of mass
Le Chatelier's Principle, 274, 498G
lead
reactions of ion, 96
see also Group 14 elements
lethal dose, 449
Lewis structure, 54
Lewis symbols, 49,51
Lewis, Gilbert N, 63B
ligand, 298, 498G
light, 387, 498G
limiting reagent, 133-134
linear macromolecules, 332
Lister, J., 358B
lithium, see Group 1 elements
lithium aluminium hydride, 347
litmus, 312
logarithms, 2

London dispersion forces,
76B,77, 498G
lone pairs, 58, 498G
effect on molecular shape,
69
LP gas, 326B
lustrous, in metals, 17
Lyman series, 394-395
magnesium, see Group 2 elements
magnesium ions, reactions of, 97
magnet moment, 409
malleable, in metals, 17
manganate(VII) ion, spectrum of, 397
manganese, see first transition series
mass, 15
from equations, 129-130
mass number, 31, 498G
mass spectrometer, $35,498 \mathrm{G}$
matter, 15
forms of, 16
melanin, 395
melting, 156
melting point, 158, 498G
melting temperature, see melting point
Mendeleev, Dimitri, 194, 213B
metal extraction, effect of temperature upon, 274
metalloids, 17, 200, 213B, 498G
metals
extraction, 274
in the Periodic Table, 213B
properties, 17
methane
chlorination of, 326
formula, 319T
in North Sea gas, 26
shape, 320
methanol, 343
methyl orange, 312
methylated spirits, 345
microwave spectroscopy, 72B
miscibility, 174
mixtures, 17
molar mass, $123,123 \mathrm{~T}$
molar solubility, 179, 498G
molar volume of gases, 161
mole fraction
to express concentration, 151, 498G
molecular formula, calculation of, 126
molecular mass, 35
calculation of, 120
molecular speeds of gas molecules, 162-163
molecule
diatomic, 54
of chlorine, 54
molecules, as combinations of atoms, 18
moles, 120-125
monodentate, 209
monomers, 332
monosaccharides, 349B
moving phase, 382

N

naming compounds, 22B
naphthalene, 338, 369
neon, see Group 18 elements
Nernst, Walther, 277
neutral solution, definition of, 299, 498G
neutralization, 92
energetics of, 224T
neutrons, 30
and beta emission, 424
nickel, see first transition series
nitrates
brown ring test for, 90 Devarda's test for, 117B in drinking water, 436
nitration of benzene, 336
nitriles, 341 T
infrared absorptions in, 404
nitrogen cycle, 117
nitrogen dioxide
dimerization of, 273
in environment, 432
reaction with water, 96
nitrogen fixation, 116-117
NMR, 409-417
noble gases, 205
discovery of, 205B
electronic structure of, 49T
stability of, 48
see also Group 18 elements
nodules, 117
non-metals
in the periodic table, 213B
properties, 17
non-polar solvents, 57, 173
normal boiling point, 158, 498G
normal melting point, 498G
nuclear fission, 427
nucleophile, 363
nucleus, 30
nuclide, 422
nutrition, 229
nylon, 352B

0

octane number of petrol, 325B
octet
expanded, 66
lack of, 65
of electrons, 48
rule, 65
oil, 324
oils, 352B
oleic acid, 351B
oligosaccharides, 349B
optical brighteners, 400
optical isomerism, 330B, 353-355
optically active, 353
orbitals, 44.45
order of reaction, 248
organic chemistry, 199, 318
organic compounds, analysis of, 334B
organic mechanisms, 362
osmosis and osmotic pressure, $189,498 G$
oxalate, oxidation of, 144
oxalic acid, 101, 349
oxidation
as electron loss, 103
definition of, 102-104
from oxidation number change, 104
ladders, 105
oxidation number, 104
of elements, 104B
oxidation state, see oxidation number
oxides of Group 1 elements, 196
oxidizing agent, $105,498 \mathrm{G}$
oxyacetylene, 334
oxygen, in water, 187, 435
ozone, 75B, 431, 432B
absorption spectrum, 432B
layer in atmospshere, 431

P

paraffins, 318
paramagnetic, 206
partition, see distribution ratio
Pascal's triangle, 411
Pauling, Linus, 59B,63B
p-block elements, 195
PCBs, 435B
penicillin, 452
peptides, 356
percent transmittance, 392, 498G
percentage composition, by mass of element, 127
percentage yield, calculation of, 132, 133
periodic law, 213B
Periodic Table
description of, 194, 195
of Mendeleev, 213B
periods, in periodic table, 195, 222, 212
peroxides of Group 1 elements, 196
petrol, quality of, 325B
pH, 152, 298-303, 498G
pH meter, 152, 298
phenanthrene, 338
phenol
as antiseptic, 358B
reactions of, 358
phenols, 358
phenyl group, 336
phosphates, 434
phosphorus, bonding in fluorides, 67
photochemical reaction, 257, 326
photographic films, 204
photons, 388
photosynthesis, 118, 435
and light absorption, 408
physical changes, description of, 19
pi bond, 333B
$\mathrm{p} K_{\mathrm{a}}, 302,498 \mathrm{G}$
p $K_{\mathrm{b}}, 306,498 \mathrm{G}$
$\mathrm{p} K_{\mathrm{w}}, 300$
Planck constant, 388
plane polarized light, 353, 354B
pnicogens, 194
polar
covalent molecules, 59
substances and rules of solubility, 173
water as a solvent, 53
polarization, 60
polarity of solvents, 174 T
Polaroid, 354B
pollutant
concentration of in water, 148
definition, 430
polyamide, 352B
polyaromatic hydrocarbons, 338
polyatomic ions, 61
polychlorinated biphenyls, see PCBs, 338
polydentate ligand, 209
polymerization condensation, 352B
polymerization of alkenes, 332
polymers, 332
polypeptide, 356
polysaccharides, 349B
p-orbitals, 45
porphyrins, 210B
potassium
dichromate ion, spectrum of, 400
dichromate, use in redox titrations, 144
hydroxide, dissolution of, 92
permanganate, use in redox titrations, 144
see Group 1 elements
precipitate and precipitation, 86, 498G
and solubility product, 180 of hydroxides, 96
precision, 7, 498G
and standard deviation, 8
pressure
of gases, 159B
partial, 161
propane as fuel, 326B
formula, 319T
propanoic acid, 349T
propene, formula, 328T
proteins, 357
hydrogen bonding in, 80
structure of, 357
protons, 30
purity, importance in chemistry,
17B
PVC, 332

R

radiation (nuclear), 422T
radioactivity, 421, 499G
radioisotopes, 423
radionuclides, 423
radium
radioactivity and ${ }^{226} \mathrm{Ra}, 424$
see also Group 2 elements
radon, 433
see also Group 18 elements
rain water, pH of, 153, 298
Ramsey, William, 205B
rate constant, 247, 499G
rate expressions, 247
rate of reaction, variation with concentration, 243, 499G
Rayleigh, Lord, 205B
reaction intermediates, 257
reaction mechanism
and kinetics, 257
reaction rates, 239
factors affecting, 243
recrystallization, 375B
redox
couples, 108
definition of, 102, 103
half-reaction, 103
titrations, 144
redox equations, 106-107
reducing agent, 105, 499G
as Group 1 elements, 195
reduction
as electron gain, 103
definition of, 102-104
from oxidation number change, 104
resonance, $62,409,499 \mathrm{G}$
hybrid, 62
respiration, 118
respiratory exchange ratio, 229
retention factor, 383
retention time, 384
reversible reactions, 262
R_{f} value, 383
rust prevention, 116
rusting, see corrosion
Rutherford, 30
sacrificial protection, 116
salt bridge, 110
salts, 92
hydrolysis of, 307

SATP, 159

saturated hydrocarbons, 326
saturated solution, 173
s-block elements, 195
scandium, see d-block elements scientific or standard notation, 1
seawater, composition, 84B
semiconductors, 202, 203B
semimetals, see metalloids
semipermeable membrane, 189
separating funnel, 375
separation techniques, 385 T
shapes
of molecules, 67-72
of transition metal complexes, 209
SHE, 109
shielding, 412
sigma bond, 333B
significant figures, $9,10 \mathrm{~B}, 11 \mathrm{~B}$
silica, see silicon dioxide
silicon, see Group 14 elements
silicon chips, 202
silicon dioxide
properties of, 200T
structure, 200
silver bromide, 204
silver chloride, 204
silver iodide, 204
silver mirror, 348
silver nitrate, use in tests, 88 , 89, 204
silver oxide, 97
skeletal structures, 319-320, 342
Smalley, Richard, 76
smog, 433
soap
and hard water, 198B
as a colloidal solution, 191
cleaning action of, 178B
sodium
aluminosilicate, 378
borohydride, 347
chloride, see sodium chloride
dichromate, in breathalyser, 108B
hydrogencarbonate, decomposition of, 196
see also Group 1 elements
sodium chloride, 19
bonding in, 49, 50
crystals, 52
electron density in, 52B
softness of water, 378, 198B
solubilization, 177
solubilities
of ionic compounds, 86,179
of organic liquids, 175T
solubility, 173
and chain length, 176
of sparingly soluble salts, 179
rules of, 173
solubility constant, see solubility product
solubility of gases, 185-187, 186T
solubility product, $180,181 \mathrm{~T}$
and precipitation, 182
solute, 19, 173
solutions, 173
solvation, $54 \mathrm{~B}, 88$
solvent, $19,173,378-379$
solvent extraction, 185, 378
calculations involving, 380B
sonorous, in metals, 17
s-orbitals, 44,45
Soxhlet extraction, 381
spectator ions, 85
spectra, 390
spectrometers, 391
spectroscopy, 387
speed of gas molecules, 163
spin-spin splitting, 411
stalagmite, 199B
stalactite, 199B
standard deviation, 8
standard electrode, 109-110
standard electrode potential, 109
use to predict reaction outcomes, 113
values, 112 T
standard enthalpy changes, see enthalpy
standard hydrogen electrode, see SHE
standard notation, 1
standard reduction potential, 112
see also standard electrode potential
standard solution, 140
standard states, 109, 217
starch, 349B
state symbols, 26
stationary phase, 382
steam distillation, 377
stearic acid, 351B
stereoisomerism, 330B

STM (scanning tunnelling
microscope), 18
STP, 159, 499G
strong bases, 306
strontium, see Group 2 elements
structural formula of alkanes, 319
structural isomerism, 321, 330B
styrene, 332
subatomic particles, $30,31 \mathrm{~T}$
sublimation, 377, 499G
substitution reactions
of benzene, 366
nucleophilic, 370
sucrose, 349B
rate of hydrolysis, 251
sugars, 349B
sulfanilamides, 451
sulfates, test for, 90
sulfides, reactions with acids, 95
sulfites, reactions with acids, 94
sulfur
monoclinic, 75B
plastic, 75B
rhombic, 75B
sulfur dioxide
production using acid, 94
reaction with water, 95
sulfuric acid, 89
care in diluting, 89
supercritical fluid, 381B
superoxides of Group 1 elements, 196
surface tension of water, 79
suspension, 191
symbols of elements, 20, 21B
synthesis gas, 325
temperature, 156B
effect upon reaction rate, 244-245
termination reaction, 257
tetraatomic phosphorus
molecules, 18B, 75B
tetrachloromethane, 342
tetramethylsilane, 411
thalidomide, 449B
thermochemical equation, 216
thermodynamically allowed reactions, 268

Thomson, J.J., 29, 30
tin, see Group 14 elements titanium, see first transition series titration, 142, 499G
acid-base, 143
redox, 144
variation of pH in, 313
TLC, 383, 384
Tollen's reagent, 348
torr (unit), 159
transition series, 206
complexes of, 207
electronic structure of, 44T
first transition series, 206-207
ions, colours of, 207
transition state, 246B, 370
transuranium elements, 423
tridentate, 209
trifluorotrichloroethane, use in extraction, 419
triol, 343
tripeptide, 356
tritium, 32

Tyndall effect, 191
unsaturated hydrocarbons, 330 uranium, isotopes of, 33T,427 urea, 318

UV light, classification of, 432B UV-visible spectra, 390
unit cell of sodium chloride, 52 units
base units and SI prefixes, 4T
deriving units, 5
universal gas constant, 163
universal indicator, 312
vacuum filtration, see filtration valence electrons in metals, 74 valency (valence), definition, 21, 56
Valium, 453
van der Waals forces, $57,76,500 \mathrm{G}$
van der Waals, Johannes, 76
vanadium, see first transition series
vaporization and equilibrium law, 279
vapour pressure, $166,500 \mathrm{G}$
of ethanol and water, 167
saturated (equilibrium), 167
vinegar, 349
vinyl chloride, 332
volume of one mole of gas, 161
volumetric analysis, 142-146
volumetric flask, 140, 140B
VSEPR theory, 67-72

W			
```Warfarin,447 washing soda, }12 water composition of natural waters, 84B```	drinking quality, 434-436   pH of, 298   vapour pressure of, 166 water of crystallization, 129 Watson, James, 80	wavelength, $387,500 \mathrm{G}$   wavenumber, 401, 500G   wave-particle duality, 44   weak acids, $302,500 \mathrm{G}$   weak bases, 306, 500G	weighing bottle, 141B weight, 15   Wöhler, Friedrich, 318 Wilkins, Maurice, 80 work, definition, 15
X			
xenon, see Group 18 elements	X-ray diffraction, 157	xylenes, 52.72B	
Y			

yeast, 344

Z		
Zeolites, 38B zinc, see d-block elements   zeroth-order, 248 zinc ions, reactions of, 96	zwitterion, 356   zymase, 344	

