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Extension 1: More about Numbers, Units and 

Measurements 

“I often say that when you can measure what you are speaking about, and express it in numbers, you know 

something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge 

is of a meagre and unsatisfactory kind….”  Lord Kelvin, 1883 

1. Introduction to Unit 1 

It may be tempting to miss this unit out, but we present it at the beginning of the book for a good 

reason: you must be able to manipulate numbers in many of the units in this book. Your calculator is 

a vital part of your tool kit, but some calculators operate differently to others, so be ready to ask a 

friend if you get stuck, particularly when it comes to using logs and exponents.  If you lack 

confidence with numbers, we recommend you take time to try out the exercises in Unit 1 before 

tackling the rest of the book.  

Numbers are the way that scientists demonstrate the size of quantities and the uncertainties 

involved in their measurement. The range of the size of quantities is huge, from the incredibly small 

to the incredibly large. As an example of the incredibly small, consider the geometry of atoms and 

molecules, which is measured in picometres: 

1 pm = 10-12 m 

A molecule of hydrogen chloride, HCl, is 127 pm long. As you may easily verify with your calculator, 

a line of HCl molecules 1 cm (0.01 m) long contains 79 million HCl molecules.  

An example of an incredibly large quantity is the number of carbon atoms in 12 g of carbon: 

6 00 000 000 000 000 000 000 000 = 6 x 1023 

But this unit is not just about numbers, it is also – like the rest of the book - about the language of 

science as expressed through definitions. The words accuracy, (absolute) error, precision and 

uncertainty have particular meanings in science and these words are often used differently in 

everyday conversation. For example, in everyday conversation, the words accuracy and precision are 

sometimes used interchangeably, whereas they have very distinct meanings in science. Accuracy 

means the closeness of a measurement to the true measurement. Precision means how close repeat 

measurements are to each other. To illustrate this, suppose that the true concentration of sodium 

ions in a solution is 10.0 parts per million by mass: 

[Na+] = 10.0 ppm 

and laboratory measurements on three samples of the solution give concentrations of 10.1, 10.0 and 

9.9 ppm: 

10.1 ppm     10.0 ppm     10.0 ppm 
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These repeat measurements are close enough to each other to justify stating that the measurements 

are precise. The mean concentration (= 30.1/3 = 10.03 ppm) is very close to 10.0 ppm – the true 

concentration – so the mean measurement is also described as accurate.   

The Extension material for Unit 1 consists of three parts. First, an example of the range of time 

encountered in science, from the incredibly fast processes involving electrons to the age of the 

universe. This will allow more practise in the use of scientific notation. Second, an explanation of the 

mathematics of straight lines, using examples from the book. Third, following on from Unit 1 in the 

book, the use of standard deviation and relative uncertainty in analysing the results of measurements 

in analytical chemistry. 

Part 1: Time Scales in Science 

2. Time scales in science 

A few calculations put big numbers into perspective. Check them with your calculator as we go 

along.  

We start with the age of the Universe, which cosmologists take to be the time back to the ‘Big Bang’ 

when our Universe began (Fig. 1.1). 

 
Fig. 1.1 Timescale of the Big Bang expansion of the Universe. Image courtesy of NASA. 

The Universe is about 14 billion years old (1.4 x 1010 years). There are 60 seconds in a minute, 60 

minutes in an hour, 24 hours in a day and 365.25 days in a year. Therefore, the Universe is: 

1.4 x 1010 x 365.5 x 24 x 60 x 60 = 4.42 x 1017 seconds old. 

Supposing that a person lives for 70 years (or, 70 x 365.5 x 24 x 60 x 60 = 2.21 x 109 seconds). The 

ratio between these times is: 

               

               
  

            

          
 = 2.00 x 108 

In other words, the Universe is the equivalent of 200 million human lives old.    

The number of atoms in one mole of substance is even greater than the age of the Universe in 

seconds. This number is equal to Avogadro’s Constant: 
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6.022 x 1023 

It has been estimated that there are about 1080 atoms in the universe. This is an incredibly large 

number – 1 followed by 80 zeros. 

 

The span of timescales for processes is very great. Table 1 shows a few examples. The fastest 

process shown is the absorption of a photon of light by a molecule: 10-15 s is a femtosecond, such a 

short time that even light travels only 0.00001 cm during this time interval. 

Table 1 

Process Timescale 

The expansion of the universe Started 14 billion years ago and is continuing 

Energy release by fusion in the Sun Complete in about 10 billion years 

Radioactive decay of Radium-226 A sample decays completely in about 16,000 

years 

Typical life expectancy of a human being Birth to death in less than 100 years 

Rusting of a nail outdoors Typically, about 10 years 

Rotation of the earth Complete in one day 

The denaturing of a protein (e.g. by boiling an 

egg) 

3 minutes 

Emission of light from a molecule Variable, but over in 10-9 s to 100 s 

Vibration of a bond within a molecule of HCl Complete in 10-14 s 

Absorption of a photon by a molecule Complete in 10-15 s 

 

 

Part 2: Graphs and the Equation of a Straight Line 

3. Gradients and the equation of a straight line 

Suppose that a quantity y is related to a quantity x by the equation: 

           (1) 

If x = 3 then y = 11. If x = 4, y = 13. If we plot y against values of x, we find that the graph is a 

straight line (see Fig. 1.2). 

EXERCISE 1A 

Suppose that the Universe consisted entirely of carbon. How much would the Universe 

weigh (in g)? 

SLOW 

FAST 

EXERCISE 1B 

Show that light only travels 0.00003 cm in 10-15 s. 
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Fig. 1.2 Plot of y=2x+5 for the x values 0 to 7 

Notice that the graph hits x = 0 at a y value of 5. Using the language of mathematics, we would say 

that the intercept of the graph occurs at y = 5. The symbol used for the intercept value of y is c. 

Here, c = 5. 

The gradient (slope) of the graph shown in Fig 1.2 is calculated by dividing a perpendicular (upward) 

distance of the graph (a) by the corresponding horizontal (‘across’) distance (b). In general: 

 

 

 

 

 

In fig 1.1, convenient values are y = 5 to y = 19 (so that distance a = 19-5 = 14) and x = 0 to x = 7 

(so that distance b = 7) and: 

gradient   
  

 
   

However, it doesn’t matter what values you choose because the gradient of a straight line is fixed.  

It is no coincidence that the number 2 occurs in equation (1). For algebraic expressions which yield 

straight lines graphs, the gradient always appears in the equation in this way. The symbol for gradient 

is m, so that here m = 2.  

The units of a gradient will be determined by the units of the axes in the graph. In our example, the 

axes are unitless (i.e. pure numbers) so that the gradient is unitless. 

The gradient is also positive i.e. +2. By convention, a graph that slopes the other way (right to left): 

y 

x 
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is given a negative slope.  

The gradient of a curve is continuously changing. An example is provided in chemical kinetics, 

where the rate of reactions are studied. For example, consider the reaction of hydrogen and iodine 

to make hydrogen iodide: 

H2(g)  +  I2(g)       2HI(g) 

As the reaction takes place, the concentration of HI increases, as shown in Fig 1.3. 

 
Fig. 1.3 Concentration of HI during the reaction of H2 and I2. 

To illustrate the change in gradient in the curve, consider the three times shown in Fig 1.3. The 

gradient at time t1, t2, and t3 is obtained by dividing distances a by b as shown. The relative size of a 

to b is greatest at time t1. This means that the gradient at t1 is greater than at t2 or t3 – 

corresponding to a higher reaction rate at earlier times. The maximum gradient would be at time 

zero1. At times beyond t4 the curve has levelled out to a horizontal straight line and the gradient is 

zero. This means that the concentration of HI (the product) does not change at further times: the 

reaction is over and no more HI is being made. 

What are the units of the gradient in Fig. 1.3? Since the units on the y axis is concentration (mol dm-

3) and the unit of the x-axis is time (in seconds), the units of the gradient is: 

                                                           
1 It might seem odd to say that the initial rate (at t = 0) is the maximum rate, since if the reaction has not 

begun the rate will be zero! However, when scientists refer to a gradient at time zero, they mean the gradient 

a tiny fraction of a second after t = 0. For example, if reaction rate changes appreciably over 1000 s (about 17 

mins), then the gradient for the concentration change 0 to 5 s will approximate to the initial rate.  
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mol dm  

s
  mol dm   s   

This is read as ‘moles per dm3 per second’. 

4. The equation of a straight line 

The general equation of a straight line (not a curve) is: 

       (2) 

where m and c is the gradient and intercept of the line. In our example: 

        

 

in which       and c = 5. Note that in the equation: 

     (3) 

 

c = 0, meaning that the plot goes through the coordinate y = 0 and x = 0. This is more obvious if we 

write equation (3) as: 

        

 

It is often very useful to arrange a formula in the form of equation (2) and examples are shown in 

Table 2. 

Table 2 Examples of the use of y = mx + c to be found in the book. In these examples, c (the 

intercept) is zero. 

Equation What corresponds to the 

quantities in y = mx + c? 

Book 

page 

number 

Concentration of dissolved gas, c, is related to the 

partial pressure of the dissolving gas by: 

   KH     

Where KH is a constant at that temperature.  A 

plot of c versus p is a straight line. 

y is c, the concentration of the dissolved 

gas 

m is KH 

c is zero 

186 

The variation of the hydronium ion concentration 

[H3O+(aq)] with the concentrations of acid (CA) 

and salt (CS). Ka(T) is a constant at that temperature: 

[    
      ]    

          

  
 

(The  symbol means ‘approximately’). A plot of 

measured [H3O+(aq)] against values of CA and CS is 

a straight line. 

y is the measured [H3O+(aq)] 

 

m is Ka(T) 

c is zero 

310 

The Beer-Lambert Law: 

            
where b is the sample cell thickness and  is a 

constant at that wavelength. A plot of sample 

absorbance A (at wavelength ) against absorber 

concentration (c) gives a straight line.  

y is the sample absorbance, A 

 

m is b. Since you know b, the cell 

thickness, the gradient allows   to 

be calculated. 

 

c is zero. 

406 
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Part 3: Standard Deviation, Precision and Relative 

Uncertainty 

5. Standard deviation and precision 

The following sections deal with the ideas of precision and accuracy in greater detail and describe 

the use of standard deviation in evaluating analytical data. 

The greater the degree of scatter of a set of measurements the lower is the precision of those 

measurements. Precision is often measured by the standard deviation of the set. The standard 

deviation s of a set of n repeat measurements is defined as 

   √
      ̄   

   
 

where x is a single measurement and x  is the mean (average) measurement. The symbol ∑ means 

‘sum of’.  

The lower a standard deviation of a set of n repeat measurements, the better the precision of those 

measurements.  

The relative precision of two or more methods of measurement (e.g. of two analytical methods) is 

compared by calculating their percent relative standard deviation. The percent relative standard 

deviation (%RSD) is calculated from the standard deviation s and mean measurement x  using the 

equation: 

      
      

 ̄
 

EXERCISE 1C 

The fall in the concentration of alcohol in blood in an individual follows the equation: 

[A] = [A]o – kt (4) 

where [A] is the concentration of alcohol at time t, [A]o is the concentration of alcohol initially 

(i.e. at t = 0) and k is a constant. A plot of [A] against t is shown below: 

 
In terms of equation (4), what is the value of (i) the gradient of the plot; and (ii) the intercept? 



 
 

8 

 

The standard deviation enables us to estimate the spread of measurements on either side of the 

mean measurement. If the only errors in the measurements are random ones, there is a 90% chance 

that the mean value of a measured quantity will be within the confidence limits 

 ̄     
 

√ 
 

However, to rely on such a calculation we need to be sure of our value of s: if the spread of 

measurements is considerable, we may have to make 10 or more repeat measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 1 

Repeat measurements of the percentage by volume of benzene in a fuel gave the 

following results: 5.5, 5.0, 5.3, 5.0, 5.2 and 5.5. (i) Calculate the standard deviation of the 

results. (ii) Estimate the confidence limits of the mean concentration. (iii) Calculate the 

%RSD of the measurement. 

Answer 

 

x (x- x)̄ (x- x)̄² 
5.5  0.2 0.04 
5.0 -0.3 0.09 
5.3  0.0 0.00 
5.0 -0.3 0.09 
5.2 -0.1 0.01 
5.5  0.2 0.04 

 sum = 0.27 

s =  
  𝑥  �̄� ²

𝑛    
 =  

   7

𝑛  
 =  

   7

5
 = 0.23% 

Note that the units of standard deviation are the same as that of the quantity being 

measured – here, the percentage. 

(ii) Range of the mean concentration 

range = x ̄± 2 
𝑠

√𝑛
 = 5.3 ± (2   0.23/(2.45)) ≈ 5.3 ± 0.2% 

We conclude that provided the systematic errors are absent and that we are confident 

we have taken sufficient measurements, there is a 90% chance that the mean benzene 

concentration is in the range 5.5-5.1%. 

(iii) %RSD = 
      𝑠

𝑥 
 = 100   0.23/5.3 = 4.3% 

(i) Standard deviation 

mean = x = 
 5 5 5   5   5   5   5 5 

6
 = 5.3% 
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6. The relative uncertainty of a measurement 

In s.5 in Unit 1 we briefly introduced the idea of error and also measurement uncertainty. The 

measurement uncertainty is ‘the ± part’ of the reported measurement. The definition of the term 

absolute error is: 

absolute error = experimental value – true value 

Uncertainty and absolute error are closely connected. The uncertainty is a measurement of the 

range  of the error that is likely to apply to the measurement. For example, if the concentration of 

sulfuric acid in a solution is measured and the mean measurement reported as [H2SO4(aq)] = 1.000 

± 0.002 mol dm-1, then the uncertainty is the ‘plus and minus bit’: 

uncertainty = ± 0.002 mol dm-1 

The uncertainty is the same as the range of the absolute error, which is ± 0.002 mol dm-3. In other 

words, the maximum absolute error is expected to be + 0.002 mol dm-1 and the minimum absolute 

error is expected to be -0.002 mol dm-1.  Put another way, the absolute error is between 0.002 mol 

dm-1 above the measurement and 0.002 mol dm-1 below the mean measurement.  

The Percentage Relatively Uncertainty of a measurement is often quoted. The Percentage Relative 

Uncertainty, symbolized % sr, is defined as: 

                                        
           

                    
 

sr increases as the uncertainty increases, or as the reported measurement decreases. 

Applying this to the measurement of the sulfuric acid concentration: 

            
     

     
 = 0.2 % 

The advantage of calculating % sr is that it indicates the scale of the doubt about a measurement. An 

uncertainty of 0.002 is not huge when the reported mean measurement is 1.000, but if the 

concentration was reported as 0.001 mol dm-3 (and the same uncertainty was estimated) then: 

            
     

      
 = 200 % 

Depending on the circumstances, that might be a worryingly high % sr. 

 

7. Using a calculator or a spreadsheet to calculate standard 

deviations 

It is very useful to be able to calculate standard deviations using your pocket calculator: study the 

calculator instructions – or as a knowledgeable friend! 

A spreadsheet, such as Microsoft Excel, may also be used to carry out the calculations. To illustrate 

this, the following Microsoft Excel spreadsheet shows calculations of the mean, standard deviation and 

%RSD of the five numbers in column B: 



 
 

10 

 

 A B 

1  1.211 

2  1.435 

3  1.303 

4  1.456 

5  1.843 

6 Mean 1.4496 

7 Standard deviation 0.241578 

8 %RSD 16.66513 

For simplicity, only rows 1-8 and columns A and B are shown. The commands entered in cells B6, B7 

and B8 were: 

=AVERAGE(B1:B5) in cell B6 

=STDEV(B1:B5) in cell B7 

=(B7/B6)*100 in cell B8 

If the following commands are used: 

=ROUND(AVERAGE(B1:B5), 3) 

=ROUND(STDEV(B1:B5), 3) 

=ROUND((B7/B6)*100, 3) 

the answers are displayed to fewer significant places. 

 

 

 

 

 

 

 

 

 

 

 

EXERCISE 1D 

The concentration of chromium in a powder was measured six times. The results (in 

units of 𝜇g     ) were: 1.2214, 1.2219, 1.2215, 1.2217, 1.2210 and 1.2208. Calculate 

the percent relevant standard deviation and the confidence limits of the mean of the 

concentration. 

EXAMPLE 2 

The concentration of magnesium in a tank of water was found using two different 

analytical methods, (i) atomic absorption spectroscopy (ASS) and (ii) by titration with 

EDTA. Twenty 10 cm³ samples were withdrawn from the tank, and five of these were 

used for five repeat measurements (after appropriate dilution) using AAS and the 

remaining five used for repeat measurements using the EDTA titration. The results 

were: 

 AAS EDTA 

Titration 

Sample  𝐌𝐠𝟐  /mg 𝐝𝐦 𝟑 

1 2.52 3.82 

2 2.43 3.74 

3 2.31 3.75 

4 2.50 3.79 

5 2.61 3.77 

 

The true concentration of magnesium in the tank water is 2.50  g     . 

(i) Calculate the mean concentration determined by each method and the standard 

deviation and %RSD of the results for each method. 

(ii) Comment upon the accuracy and precision of each method. 
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General revision questions for Unit 1 

1. The rate (‘speed’) of the reaction between bromopropane and sodium hydroxide is given by the 

equation 

rate of reaction = k [   7  ] [    ] 

where [   7  ] is the concentration of bromopropane (in         ), [    ] is the concentration 

of sodium hydroxide (also in         ) and k is a constant called the rate constant. The units of 

rate of reaction are             . What are the units of k? 

2. The concentration of a hydrogen ion in a solution is 0.0545         . Calculate the pH of the 

solution, expressing your answer to the correct number of significant figures. 

3. A standard solution containing exactly 30.0 parts per million (ppm) of chromium(III) ions is sent 

to a laboratory for analysis. The lab reported that [        ]               . 

(i) What is the uncertainty of the mean measurement? 

(ii) What is the absolute error of the mean measurement? 

(iii) What is the percentage relevant uncertainty of the measurement? 

Revision questions for Extension 1 

1. The ozone concentration in cm³ of ozone per million cm³ of air (i.e. in parts per million by 

volume, symbolised ppm(v)), was measured at a traffic junction. Repeat measurements over a five-

minute period gave the following concentrations: 0.21, 0.22, 0.21, 0.23, 0.22, 0.22, 0.24, 0.19, 0.23 

and 0.24. Calculate (i) the mean ozone concentration to two significant figures and the standard 

deviation to one significant figure, and (ii) the confidence limits of the mean concentration of ozone. 

2. The concentration of benzene in a sealed flask was determined by two analytical methods, A and 

B. The results of four repeat measurements taken at the same time were: 

EXAMPLE 2 

 

(i) For AAS, [Mg  ]            g     , 𝑠                
    

   7
        

For titration, [Mg  ]         8  g     , 𝑠                 
    

  78
   8    

(ii) The best way to assess the precision of the methods is to compare their %RSDs. 

The results from the titration have the lower %RSD, so they are more precise (less 

scattered) than those obtained by AAS. On the other hand, the AAS results are more 

accurate, since the mean AAS concentration (      g       is closer to the true 

concentration and the error is only 2.50 – 2.47 = 0.03  g     . The poor accuracy of 

the results obtained by the EDTA titration suggests that the titration is subject to 

chemical interference. (For example, this might be because other metal ions present in 

the mixture are combining with the EDTA.) 

(continued) 
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 Method A Method B 

Measurement Hydrocarbon 

concentration/ppb 

1 2.4 3.5 

2 2.6 3.3 

3 2.5 2.9 

4 2.4 3.2 

The true concentration of benzene in the flask is 3.100 ppb. Calculate the mean concentration of 

benzene determined by two methods, the percent relative deviation of both methods and the error 

of both methods. Comment on the accuracy and precision of both methods. 

Answers 

Exercises 

Exercise 1A 

Number of moles of C = 1080/6.022 x 1023 = 1.066 x 1056 

One mol of C has a mass of 12 g. Mass of Universe = 1.066 x 1056 x 12 = 1.99 x 1057 g.  

Exercise 1B 

c = 3 x 108 m s-1. In 10-15 s, light travels 3 x 108 x 10-15 = 3 x 10-7 m or 3 x 10-5 (= 0.00003) cm.  

Exercise 1C 

(i) Gradient is –k, the minus reflecting the fact that [A] falls with time, t. 

(ii) Intercept is the value of the y-axis (here [A]) when the value of the x-axis (here, t) is zero. From 

the plot and also by inspection of equation (3), we see that at t = 0, [A] = [A]o. 

Exercise 1D 

mean conc = 1.22138  g      

Std dev = 0.00417  g      

%RSD = 100   
      8

      7
 = 0.0341% 

Confidence limits = 1.22138 ± 
          7

√6
 = 1.22138 ± 0.00034. 

Therefore, in the absence of systematic errors there is a 90% chance that the concentration of Cr 

lies between the limits 1.2217 – 1.2210  g      

Revision questions for Unit 1 

1. k = 
                

[      ][    ]
 

So that the units of k = 
          

           
 =              

2. pH =    g [      ] = –log (0.545) = –(–) 0.2636 = 0.2636 = 0.264. 

3. (i) uncertainty = ± 5ppm 

(ii) Absolute error = 30.0 – 35.0 = -5 ppm 

(iii) %    = 100   
5

 5
 = 14%. 

Revision questions for Extension 1 

1. Mean concentration   0.22 ppm(v), s ≈ 0.02 ppm(v).  

Confidence limits = x  ±     
 

√ 
   0.22 ± 0.013 ≈ 0.23 – 0.21 ppm(v). 

2. 
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 A B 

Mean 2.475 3.225 

STD 

Dev 

0.0957 0.250 

%RSD 3.89 7.75 

 

The errors are: (3.100 – 2.475) = 0.625 ppb (for Method A) and: (3.225 – 3.100) = 0.125 ppb, so 

that Method B is more accurate than Method A. However, the %RSD of Method A is only 3.89%, so 

that it is the more precise of the two methods. 

 


