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Extension 10: Temperature, Kinetic Molecular 

Theory and Supercritical Fluids 
 

In this extension, we start by distinguishing between heat and temperature. We re-examine the definition of 

temperature and introduce the Boltzmann expression which allows us to calculate the relative population of 

two molecular energy levels in a sample containing a large number of molecules. We move on by examining 

three more advanced topics. First, a more detailed examination of one aspect of the kinetic molecular theory 

for gases. Second, heat capacity. Thirdly, - and following on from the work on phase diagrams in the book – 

we explain what is meant by a supercritical fluid.  

 

1. Energy and Temperature 

Energy is a surprisingly difficult idea to define. Fortunately, we are more concerned with what energy 

‘does’. Energy has two important properties. First, transferring energy allows us to do the 

activity called ‘work’. This might be by transferring energy from a fire to water to produce steam 

that drives a piston, or by transferring the energy of sunlight to produce electricity in a solar cell.    

 

Second, energy is conserved. This means that whatever happens to energy, whatever it is 

converted to, the sum of the new energies always adds up to the amount of energy we started with. 

If we transfer y joules of energy into a dynamo to make electricity, then the sum of the energy lost 

as friction (heat) and electricity produced adds up to y joules. This is, of course, an alternative 

statement of the Law of Conservation of Energy, also known as the First Law of Thermodynamics.  

 

At constant pressure, the energy of a material is called its enthalpy, H. The energy contained in 1 kg 

of iron at its melting point is double the energy contained in 0.5 kg of iron at its melting point. 

Quantities - like energy - which depend on the amount of substance are called intensive quantities. 

On the other hand, temperature is an extensive quantity: its value does not depend upon the amount 

of mass present. The temperature of iron at its melting point (1535°C) is the same whether we have 

0.5, 1 or 100 kg of iron. An analogy, called ‘the nail and the bath’, helps to distinguish between 

temperature and energy. A red hot nail has a much higher temperature than a bath of lukewarm 

water, but the bath – because of its much greater mass – contains more thermal energy (commonly 

termed heat).   

Table 1 gives several definitions of temperature. Although it might not seem obvious, they are all 

equivalent.  

Table 1 Definitions of temperature 

1 The hotness or coldness of a body 

2 The condition that determines the direction of heat flow 

3 A measure of the average kinetic energy of molecules in a body 

4 For a given molecular system, temperature is a quantity than controls the 

population of the available energy levels 

 

Definition 1 is the one that we meet first in school. A hot object is hot to the touch and we might 

use a thermometer to measure the temperature of an object. The scale used on the thermometer is 

a matter of convenience and we will use either the Celsius scale (in degrees °C) or the absolute 

temperature scale, in kelvin (K). 
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Definition 2 relates to the direction of flow of heat energy. If two pieces of metal are at the same 

temperature, no heat energy will travel between them. Even the slightest difference in temperature 

will initiate the flow of heat energy and such a flow will continue until the two pieces of metal are at 

the same temperature. The amount of heat energy that flows depends on both the masses of the 

metals and upon the temperature difference between the two pieces of metal, but under no 

circumstances will heat energy travel spontaneously (that is, without assistance) from a cold object 

to a hot object. Historically, the idea that heat always flows from hot to cold has occupied a central 

position in scientific thought and we will return to this in Extension 16.  

 

 

Fig 2 

 

Fig. 10.1 For centuries, scientists have been fascinated by the universal observation that heat flows spontaneously from a 

hot to a cold body, never from a cold body to a hot body. Here, T1 > T2. 

Definition 3 relates temperature to the average kinetic energy of particles. As explained in Unit 10 of 

the book, the particles of a lump of matter move faster at higher temperature because they have 

more kinetic energy.  

 

2. The Boltzmann distribution equation for the population of energy 

levels  

Definition 4 requires explanation. Think of a container of hydrogen gas molecules. Imagine that the 

container is heated by a Bunsen flame. Energy is transferred to the container from the flame. There 

are two consequences of this heat transfer. First, both the temperature and pressure of the gas 

inside the container increases. Second, more hydrogen molecules occupy higher energy levels and 

the average kinetic energy of the gas molecules increases. 

Let the number of molecules in energy level E2 and E1 be N2 and N1 respectively.  E2 is greater than 

E1. The Boltzmann distribution equation1 connects the relative number of molecules at these 

energies (i.e. the ratio N2/N1) with the temperature, T (in K), of the collection (the ‘system’) of 

molecules and the energy difference E2 - E1: 

  

  
 =                …(1) 

Where R is the universal gas constant (8.3145 J mol-1 K-1). The units of E are J mol-1. Note that the 

absolute values of E2 and E1 are unimportant: it is the difference E2 - E1 that influences N2/N1. 

 

                                                           
1
 Another equation due to Boltzmann, referred to as the Boltzmann Equation, is discussed in Extension 16. In 

using equation (1) we are ignoring the fact that there might be several molecular states of the same energy. 

This is called degeneracy and it is discussed further in more advanced textbooks.  
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This calculation confirms that at higher temperatures, more of the higher energy levels are 

populated. The nature of the ‘e to the power of……’ in the Boltzmann distribution equation, 

equation (1), means that 
  

  
 increases very rapidly with temperature. This is sometimes described by 

stating that the ratio N2/N1 is ‘very sensitive’ to temperature. In our example, the temperature has 

increased by the ratio (1750/308) = 5.7, yet the value of N2/N1 has increased by (0.5/0.02) = 25.  

Look at the RHS of the Boltzmann distribution equation: 

  

  
 =              

E2 and E1 are two of the many molecular energies allowed by nature. Such energies are fixed for that 

molecule. Therefore, for a particular molecule, it is the temperature T that controls the distribution 

(or spread) of molecules in the different energy levels. This justifies the 4th definition of temperature 

given in table 1: 

For a given molecular system, temperature is a quantity than controls the population of 

the available energy levels 

   

 

Suppose that two energy levels are separated by 10 kJ mol-1 = 10000 J mol-1. Then, E2 - E1 = 

10000 J mol-1. At 308 K, the relative population of the molecules in energy level E2 and E1 is: 

𝑁 

𝑁 
 = 𝑒  10000   8.3145 𝑥 308  = 0.020 

For example, suppose there are 50 molecules in energy level 1, then there will only be one 

molecule in energy level 2. (Check this out yourself. 1/50 = 0.02). See Fig 10.1. The relative 

percentage of molecules in energy level 2 compared to energy 1 is therefore: 

 
0.020 𝑥 100

1
  =  2.0 % 

If we increase the temperature of the gas molecules to 1750 K, then  

𝑁 

𝑁 
 = 𝑒  10000   8.3145 𝑥 1750  = 0.50  

For example, if there are 34 molecules in energy level 1, there are 17 in energy level 2 (see Fig. 

10.2). (Check this. 17/34 = 0.5).  

 

EXAMPLE 1 
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Fig. 10.2 Numbers of molecules in the higher and lower energy levels in a collection of 51 molecules and calculated using 

the Boltzmann equation for the case where E2 – E1 = 10 kJ mol-1.   

The Boltzmann expression applies when the collection of molecules is at thermal equilibrium i.e. it is 

at a constant temperature. If, for example, the container of hydrogen is dropped into an ice bath, the 

molecules would exchange energy by collisions and only when the system has reached the new 

(lower) temperature can we equation (1) in calculations.  

In the calculations above, E = E1 – E2 = 10 kJ mol-1. This is the typical difference between the first 

two vibrational energy levels in a diatomic molecule. Since N2/N1 = 0.02, most diatomic molecules 

will sit in their lowest vibrational energy levels at room temperature. The difference between the 

lowest electronic energy levels (energy due to the position of electrons in bonding orbitals) in 

diatomic molecules is typically 200 kJ mol-1.  Applying the Boltzmann equation at room temperature, 

say 300 K, we see that: 

  

  
 =                  200000   8.3145   300  = 1.5 x 10-35 

This demonstrates that the population of the second energy is negligibly small. Even if there were 

one mol of molecules (6.022 x 1023 molecules), it is statistically very unlikely that there would even 

one molecule in the second energy level. Increasing the energy gap between the energy levels has a 

dramatic effect in reducing the population of the higher energy level.  

Why does nature follow the Boltzmann distribution of energies? It turns out for large numbers of 

molecules2, the Boltzmann distribution is simply a reflection of the most statistically probable 

distribution for that energy gap (i.e. E2-E1) at that temperature. One distribution is so probable that 

at that temperature it is the only distribution that is ever observed3. This was proved mathematically 

by the famous theoretician Ludwig Boltzmann, who was born in Vienna, Austria, in 1844. Boltzmann 

is also remembered through the universal constant known as the Boltzmann constant, k. The 

Boltzmann constant and the universal gas constant (R) are simply related: 

   
 

  
 

Since R = 8.3145 J mol-1 K-1 and NA (Avogadro’s Number) = 6.022 x 1023 mol-1: 

                                                           
2 We nearly always operate with extremely large numbers of molecules. Since one mol of gas contains 6 x 1023 

molecules, even a tiny sample of gas contains trillions of molecules.  
3 See Extension 16, s7, where energy distributions in large collections of molecules is discussed in greater 

detail.  
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8.3145

 .022   10   = 1.381 x 10-23 J K-1 

It may help to think of R as the Boltzmann constant per mol of particles. 

 

3. The Kinetic Molecular Theory of Gases 

In Unit 10 we introduced the ideal gas equation: 

PV = nRT  …(2) 

where n is the number of moles of gas in the container of volume V at temperature T.  Rearranging 

for the pressure, P, of the gas: 

  
   

 
 

we see that the gas pressure increases as the number of mols of gas (which is proportional to the 

number of molecules of gas) increases.  

The ideal gas equation is verified by experiment and it allows us to successfully calculate one of the 

parameters in its equation provide we know the others. To use it (for example, to calculate the 

pressure of a sample of gas from V, T and n) requires no theoretical model: ‘the equation works’ and 

provided that gas pressure is not too high or temperature too low its predictions are verified by 

experiment. We can apply the ideal gas equation without drawing upon any unpinning 

theoretical model for gases. Nevertheless, there is a remarkable feature of this equation: the 

pressure of a sample of gas is independent of the type of gas. The equation works whether the gas 

consists of hydrogen, benzene vapour, neon or water vapour. This is rather curious: surely a heavier 

molecule would thump into the container wall with greater force and cause a higher pressure? 

The answer to this puzzle comes from the kinetic molecular theory. The assumptions in this theory 

are: 

1. Gases consist of molecules in chaotic and random motion. 

2. The molecules do not attract or repel each other. 

3. That collisions between any two molecules does not result in an overall  loss of energy 

(i.e. a change in temperature) of the gas sample. 

4. The volume of the gas molecules is small compared to the volume of the container 

Armed with these assumptions, mathematical analysis of the pressure caused by the impact of gas 

particles (molecules) on the surface of a container shows that at a particular temperature, T, the 

pressure of the gas, P, is related to: 

 the number of mols of gas (n) 

 the container volume V 

 the molar mass M of the gas 

 and to  , the mean speed of the molecules4.   

                                                           
4
 More precisely, c is a kind of average speed known as the root mean square speed of the molecules but we 

needn’t be distracted by that here. 
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The exact relationship between these quantities is found to be: 

P =  
1

3

    

 
   (3) 

We will not derive this but the important point to note is that this equation is the result of a 

theoretical consideration of the way that molecules behave in a gas. It is not an equation derived 

from experiment.  

Equation (3) provides a theoretical prediction that gas pressure: 

 increases with the molar mass of the gas, M. Provided that nothing else changes, P doubles as 

M doubles. 

 is inversely proportional to container volume, V. This is another statement of Boyle’s Law. 

 
Fig. 10.3 In the mathematical analysis of the kinetic molecular theory, it is assumed that gases consist of tiny 

molecules travelling randomly through space. It is assumed that the molecules do not significantly attract each other.  

 

Suppose that we have two containers of different gases at the same pressure P, for example, oxygen 

and nitrogen. Both containers have equal volume and contain the same number of mols of gas, n. 

The pressure of gas in each container, P1 and P2, is calculated using the mathematical model of gas 

behaviour, equation (3): 

P1 = 
1

3

     
 

 
             and           P2 = 

1

3

     
 

 
 

Where M1 and M2 are the molar masses of the two gases and  1        2     are the mean speeds of 

the molecules of the two gases. Since we have specified that the gases are at the same pressure we 

can write: 

P1 = P2  

or 

 
1

3

     
 

 
 = 

1

3

     
 

 
 

Cancelling like terms gives:  

 1 1
2    2 2

2                                         (4) 

Equation (4) explains the observation that the pressure of a gas calculated using the ideal gas 

equation is independent of the mass of the molar mass of gas. Since the molecules are of different 
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molar mass, the right and left hand sides of equation (4) can only be equal if v1 and v2 are different. If 

M2 > M1, then for a particular pressure, P, v2 must be less than v1 so that smaller molecules must 

travel faster than big molecules. In other words, the mean molecular speed of a gas consisting of a 

heavier molecule (higher mass) is adjusted perfectly so that the values of  1
2 and  2

2 preserve the 

equality of equation (4). We now have a theoretical basis to explain the independence of the 

predictions of equation (2), the ideal gas equation, on the type of the gas molecules present.  

 

4. Molar Heat Capacity of an Ideal Monoatomic Gas 

We now look at the kinetic energy (energy due to movement) of a monoatomic molecule in the gas 

phase. (A monoatomic molecule is one containing one atom, such as Argon, Ar). The only source of 

kinetic energy of a monoatomic molecule is due to the movement of molecules through space (so-

called translational energy). The kinetic energy, EK, of a collection of moving particles of n mols of 

gas molecules is calculated by the equation: 

   
1

2
   2     (5) 

or 

       2     (6) 

where M is the molar mass of the gas and    is mean speed of the molecules. Equation (5) is simply 

an adaption of the familiar equation for the kinetic energy (KE) of a particle from basic physics: 

   
 

 
  2 

to allow for the fact that we wish to work with the amount of substance in mols rather than in 

number of molecules. 

Rearranging equation (3) gives: 

PV =  
    

3
 

We now combine this theoretical equation with the experimental ideal gas equation: 

PV = nRT 

so that  

   2

 
     

If we substitute      for    2: 

   

 
     

Rearrangement gives: 

   
3

2
     (7) 
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This equation confirms our previous statement (see Table 1) that the average molecular energy of a 

monoatomic ideal gas increases with temperature. If we double T, then EK doubles.  

Think of 1 mol of gas at 298 K. Its kinetic energy is easily calculated using equation (7): 

   = (3/2) x 8.3145 x 298 = 3716.5 J  or 3.7165 kJ mol-1.  

If the gas temperature is raised to 299 K, its kinetic energy is greater: 

   = (3/2) x 8.3145 x 299 = 3729.1 J 

The amount of energy needed to raise the temperature of 1 mol of gas from 298 K to 299 K is 

therefore: 

 3729.1 - 3716.5 = 12.6 J. 

The amount of energy needed to raise the temperature of 1 mol of a substance by 1 degree oC (or 

K) is called its molar heat capacity. The units of heat capacity are J K-1 mol-1. For gases, we need 

to specify that the heat is added at constant volume i.e. that the gas is not allowed to expand during 

the absorption of heat: the molar heat capacity is then described as ‘heat capacity at constant 

volume’ and is symbolized Cv: 

Cv of an ideal monoatomic gas = 12.6 J K-1 mol-1. 

Heat capacity may be likened to sponges absorbing water. Think of two sponges made of different 

materials. Droplets of water are added to both sponges. The one sponge is very absorbent and the 

water enters its structure so that no water appears at its surface. The other is not. Now think of 

two substances and replace the added water with heat and the appearance of surface water with the 

temperature of the substance.  The higher the molar heat capacity of a substance, the higher is its 

ability to absorb (‘use up’) heat energy inside its structure and so minimise an increase in its own 

temperature.   

Here are some experimentally determined Cv values (J K-1 mol-1) for the noble gases: 

Helium   12.5 

Neon  12.5 

Argon  12.5 

The values are very close to that predicted for an ideal gas: 12.6 J K-1 mol-1. The agreement between 

the value of Cv predicted by the kinetic molecular theory and that observed experimentally is 

excellent. Despite the fact that the assumptions of the kinetic molecular theory are unrealistic (we 

know, for example, that molecules have volume), the model successfully predicts the molar heat 

capacities of gases whose molecules consist of only one atom.  

With molecules containing two or more atoms (such as H2 and H2O) agreement between the 

predicted and experimental values is poor. This is because equation (7) applies only to monoatomic 

gases where the only kinetic energy of a molecule is due to its movement through space 

(translational energy). For molecules with more than one atom, there are other contributions to the 

kinetic energy of the molecule. Molecules can rotate and vibrate and these motions also store kinetic 

energy.  
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It is important not to get ‘too bogged down’ by the above equations. Introducing them has a simple 

purpose and this glimpse of the mathematics of an ideal gas serves to illustrate how experimental 

observations - i.e. the ideal gas law - may be rationalized using a theoretical model. Here, the 

theoretical model reproduces the predicted mathematical behaviour of the variables (P, V, n, T) in 

the ideal gas equation. But the theoretical model also explains why (for example), the ideal gas 

equation works independently of the type of gas and it also allows us to predict why the heat 

capacity of monoatomic gases is about 12.6 J K-1 mol-1. Similar mathematical models mimic the 

behaviour of other ‘systems’ in chemistry, and they allow the calculation of reaction rates, 

equilibrium constants and bond energies from first principles.   

 

5. Supercritical Fluids 

In unit 10 we defined critical pressure and critical temperature. Although we might think that a gas 

could always be liquefied – whatever its temperature – if enough pressure is applied, experiments 

show that for each gas there is a critical temperature above which liquefaction is 

impossible – even at the highest available pressures. The pressure required to liquefy a gas at its 

critical temperature is called its critical pressure. 

For example, the critical temperature of carbon dioxide is 31oC (304 K). Above this temperature, 

even a pressure of 100,000 atm would not produce liquid CO2. At 31oC, a pressure of 74 atm is 

required to produce liquid CO2. Therefore, for CO2: 

 Critical temperature (Tc) is 304 K: this is the highest temperature at which liquid CO2 can 

exist.  

 Critical pressure (Pc) is 74 atm: this is the pressure needed to liquefy CO2 at its critical 

temperature of 304 K  

In Unit 10 we introduced the generalized phase diagram for the solid, liquid and gaseous phases of a 

pure solid, such as water or carbon dioxide. Fig. 10.4 shows the diagram again but with the pressure 

and temperature extended to higher values. At temperature/pressure coordinates within the yellow 

zone, the most stable phase of CO2 is gas; within the blue region it is CO2 liquid that is the most 

stable; in the pink region it is solid CO2 that is the most stable.  

Fig. 10.4 shows also shows the critical pressure and temperature of the substance under study. The 

co-ordinate point Tc, Pc is called the critical point of the substance.  

At temperatures above the critical temperature and above the critical pressure (a region of 

pressures and temperatures shown in Fig. 10.4 as a green box) the substance is said to be a 

supercritical fluid: here, the word ‘super’ means ‘above’ i.e. the supercritical fluid only exists 

above its critical pressure and critical temperature.        
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Fig. 10.4 Generalised phase diagram showing the supercritical region. The red dot     is the critical point. Tc and Pc are the 

critical temperature and critical pressure respectively.  

Ethane, C2H6, is a colourless gas at room temperature and pressure. Fig. 10.5 shows some 

remarkable photographs of ethane (taken by Dr. Sven Horstmann, Laboratory for Thermophysical 

Properties, Germany). At or close to the critical point, fluids become opaque and white (a 

phenomena given the grand name ‘critical opalescence’) and this is seen in Fig. 10.5(b).  

 

Substances in the supercritical region are neither gases or liquids and their density is intermediate 

between that of the liquid and gas states. They therefore spread out (diffuse) in a similar way to (but 

less effectively than) a gas and they act as solvents in a similar way to (but less effectively than) a 

liquid.  High diffusion rates and solvation (dissolving) power are both highly desirable in solvent 

extraction and so the use of supercritical fluids in solvent extraction effectively incorporates both 

these properties in the solvent. Increasing the pressure of the supercritical fluid increases its 

solvating power but reduces its rate of effusion. The use of supercritical fluids to extract solutes 

from organic material is called supercritical fluid extraction (SFE). This subject was introduced in 

the book on page 381 where the decaffeination of coffee was also discussed. Special equipment is 

needed to maintain the solvent in a supercritical state. Since SFE requires that the solvent is above 

its critical temperature some heating is often required (although in the case of CO2 this is minimal 

since its critical temperature is only 31°C). The requirement that the solvent be above its critical 

pressure is usually more demanding as pressure-resistant vessels are required (for CO2 Pc = 74 atm). 

We do not usually require an exact temperature or pressure to be maintained, provided that both Pc 

and Tc are exceeded during the extraction.  
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(a)                                                                             (b)                                                                   (c) 

Fig. 10.5 Ethane in a pressure container. In (a), the ethane gas is pressurised below its critical temperature and both 

(clear) liquid and gas co-exist; (b) is the same ethane sample but exactly at its critical temperature of 32.17 oC and at its 

critical pressure of 48.72 bar. The system is now uniformly opaque and since there is only one phase and there is no 

meniscus; (c) shows the sample of ethane above its critical point. The fluid is clear. The ethane is neither gas or liquid: it is 

said to be in the supercritical state. Photographs kindly provided by Dr. Sven Horstmann. 

 

6. The Reasons Why Carbon Dioxide is a Useful Solvent 

Supercritical carbon dioxide is a particularly useful solvent because: 

1. It is easily removed (leaving the extracted material behind) because it will evaporate in the 

open lab.  

2. It is reasonably good solvent for non-polar or slightly polar solutes. This makes supercritical 

CO2 a good solvent for a wide range of organic compounds, including most hydrocarbons. In 

the case of caffeine (in coffee beans), supercritical CO2 is able to extract (i.e. dissolve) 

caffeine without extracting the bigger (and less soluble) molecules that give coffee (and 

roasted coffee) its characteristic taste.    

3. Experiments show that supercritical CO2 is a good solvent even in the presence of water. 

This is important as water is often present in mixtures containing the solute that we wish to 

extract. (The temperature required to maintain a mixture of CO2 and water in its 

supercritical state is higher than 31oC, but is easily achieved experimentally).  

4. The low critical temperature of CO2 means that organic compounds are less likely to be 

decomposed.    

5. Carbon dioxide is non-toxic. For example, if halogen-containing solvents were used to 

extract caffeine from coffee beans, there is the danger than traces of toxic solvent might be 

present in packaged coffee beans. 

 


