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Extension 16: Entropy and applications Of Gibbs 

Energy Change 

Introduction 

In Unit 16: 

 The meaning of ‘spontaneous process’ was explained, with the cautionary note that 

some spontaneous processes may be extremely slow.  

 The idea of entropy was introduced.  

 When systems undergo a spontaneous change, G falls. 

 The standard change in Gibbs energy for a reaction Go, was used to calculate the 

equilibrium constant, K, at that temperature. If Go is negative, K > 1. 

This extension complements Unit 16, so it will be very useful to have a copy of your textbook to 

hand so that you can identify where further explanations have been made.  

The sections in this extension are as follows: 

Section Title Page 

1 Spontaneous processes 2 

2 Examples of spontaneous reactions 3 

3 Entropy  3 

4 The Second Law of Thermodynamics 5 

5 Calculating overall entropy change as a result of chemical reaction 6 

6 Gibbs Energy change, G 9 

7 Microstates and the Boltzmann interpretation of entropy 9 

8 Using microstates to rationalise the changes in entropy for 

spontaneous processes 

12 

9 Why raising the temperature of a material raises its entropy 13 

10 Why increasing the volume in which molecules are contained 

increases entropy 

13 

11 The Gibbs energy change, G and spontaneous change 15 

12 Go and spontaneous processes 17 

13 Is there a driving force of spontaneity? 18 

14 Gibbs free energy and the thermodynamic stability of substances 18 

15 Predicting whether a reaction will occur using standard electrode 

potentials 

20 

16 Thermodynamically and kinetically controlled reactions 21 

These topics can be selected in any order with some material deferred for future study as required. 

The choice of topics is not comprehensive but gives a flavour of what is involved in a more advanced 

study of this subject.  

The idea of entropy and Gibbs energy are not easy to grasp, but there is something special and 

fundamental about the way that they illuminate the ‘goings on’ of chemical reactions in particular and 

for this reason their study can be very rewarding. However, gaining an understanding of these topics 

only occurs incrementally, with new insight every time they are studied, so be patient!  
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1. Spontaneous Processes 

In Unit 16, we used the following definition of the word ‘spontaneous’: 

A spontaneous process is one which is one which, once started, proceeds naturally in a 

particular direction without help.  

We might add that a spontaneous process means a process on a bulk (macroscopic) scale. As 

discussed in the book (p.262), chemical equilibrium is dynamic. The fact that the concentrations of 

reactants and products remain unchanged at equilibrium is a consequence of the fact that the 

forward and back reactions are proceeding at the same rate. At the molecular level change is 

constant as reactant molecules are constantly changing to product and vice versa, but 

macroscopically there is no change. It is at the macroscopic level that the word ‘spontaneous’ 

applies.   

When we state that a particular change is spontaneous, this is only true under a specific 

set (or range) of conditions. One such condition is temperature. Ice left out in the garden will 

spontaneously melt (albeit often slowly) at temperatures above 0°C, but not if the temperature is 

below 0oC. A protein will not denature at room temperature, demonstrating that this process is not 

spontaneous, but it is spontaneous at 100°C. 

We shouldn’t think that changes that are non-spontaneous at room temperature are impossible. A 

non-spontaneous process can be forced to happen, but it requires work – the expenditure of energy 

- to do this. Imagine a cylinder of gas which has a piston (Fig. 16.1). Suppose we very rapidly increase 

the temperature of the gas by placing the cylinder and piston into a vat of boiling water. The gas 

temperature increases and the piston will be forced upwards as the gas spontaneously expands at 

the higher temperature. After a minute or so, the gas volume remains constant at its new 

(equilibrium) value. Provided that the water is kept boiling, the temperature of the gas in the cylinder 

will not fall and the volume of the gas will not spontaneously change.  However, even then we can 

force the reverse (non-spontaneous) process by ‘doing work’ e.g. by placing a heavy mass on the 

piston handle. The gas volume then decreases.    

 

Fig. 16.1Gas inside a cylinder with a movable piston 

The electrolysis of water is another example of bringing about a change that is naturally non-

spontaneous at room temperature. Water can be decomposed into hydrogen and oxygen at room 

temperature by using electricity which is brought into contact with the solution through electrodes, 
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but without the electricity no decomposition takes place. Here, it is the electricity that ‘does the 

work’ and without it, the water would not decompose at room temperature.  

The absence of reaction speed in the definition of spontaneous process raises an interesting 

question. Think of a proposed reaction: the reaction of reactant P with reactant Q. Suppose that we 

mix P and Q in the lab but notice no reaction. How do we know whether or not the reaction is 

kinetically slow or simply non-spontaneous at room temperature? The kinetic approach would be to 

try harder to make the rate visibly fast: use a higher temperature by bringing the reactants in contact 

with a flame, increase reactant concentration, try a variety of catalysts or use UV light. Yet, if these 

attempts were unsuccessful, we would still not know the answer to the question. In that case, we 

have only one course of action: to calculate the change in Gibbs energy, G, of the reaction and see 

if it is negative at the temperature in question. This will be, of course, dependent on the availability 

of the enthalpy and entropy data. 

2. Examples of Spontaneous Reactions  

Most of the examples of spontaneous processes given in the book are chemical reactions, but our 

conclusions regarding entropy and Gibbs energy apply to all spontaneous processes, including 

physical changes such as: 

 The dissolution of salts in water. Some salts spontaneously dissolve in water.  

 The diffusion of gases from higher to lower gas pressure. 

 The transfer of heat from a hot body to a cold body. 

The third example (Fig. 16.2) occupies a particularly hallowed place in the history of 

thermodynamics. It is deceptively important and has been the subject of study by some of the 

greatest scientific minds. It has been known for hundreds of years that the condition for heat to flow 

between two objects is a difference in temperature between those objects: heat always travels from 

hot to cold and this is the basis of one of many statements of the Second Law of Thermodynamics, 

due to Rudolf Clausius (1822–1888): ‘that heat cannot travel from a cold body to a hot body without 

external help’. The refrigerator is an important example which helps clarify Clausius’ definition. In 

order to cool food, ‘external help’ (or work) in the form of an evaporation/condensation cycle is 

required. 

 

 

Fig. 16.2 For centuries, scientists have been fascinated by the universal observation that heat flows spontaneously from a 

hot to a cold body, never from a cold body to a hot body. Here, T1 > T2 

3. Entropy 

During a spontaneous process, energy always spreads out so that energy is more dispersed in the 

final state than in the initial state. This observation, suitably developed and formalised with the type 

of system specified, is another way of expressing the famous Second Law of Thermodynamics. The 

degree to which energy is spread out during a process is measured by the quantity named entropy, 

S. 
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It is fitting that the word ‘entropy’ comes from a Greek word meaning ‘transformation’. Changes in 

entropy occur if: 

1. There is a change in temperature 

2. A molecular re-arrangement (a chemical reaction) occurs 

3. We mix materials together 

4. There is an alteration in volume 

5. There is a change in phase (e.g. solid to liquid) 

It is useful to be able to predict the sign of an entropy change, S, of a chemical reaction and simple 

rules to make such predictions are explained in p.284 in the book. 

In chemistry, it is convenient to distinguish between the reacting system (e.g. a beaker containing 

reactants and products) and the ‘surroundings’, which are normally the laboratory, its fittings and its 

atmosphere. The overall change in entropy, Soverall, that accompanies a chemical change (from start 

to completion) may then be broken down into two parts: 

Soverall = S + Ssur    (1) 

where S is the entropy change undergone by the reacting system from its initial state to completion 

and Ssur is the entropy change undergone by the immediate surroundings at a constant 

temperature. (We might have symbolised the entropy change of the reacting system as Sreact but 

the convention is that we use S).  

Think of a reaction that takes place in an open beaker.  The temperature of the beaker and its 

contents before reaction started equals the temperature, T, of the laboratory. After the reaction is 

over, the temperature of the beaker and its contents slowly returns to T. The enthalpy change of the 

reaction will have a negligible effect upon the temperature of the much more massive lab and its 

atmosphere, and so the temperature of the surroundings does not change. Therefore, when we 

state that ‘the reaction has taken place at T’, we mean that this was the initial temperature of the 

reactants and, eventually (after heat has been exchanged with the surroundings), the final 

temperature of the products. T is also the temperature of the surroundings before, during and after 

the reaction. It is this temperature, T, that we substitute into our equations below and which we use 

to calculate Go (see for example s.16.10 in the book, p.289). 

The effect of the reaction on the laboratory atmospheric pressure is also negligible and so we may 

also regard this as unchanging during the reaction. Since the temperature and pressure of the 

surroundings will be constant during the reaction, we can use enthalpy to represent any energy 

changes.  

The only reason that the entropy of the surroundings changes is that it has either received heat from 

the reaction or lost heat to the reaction. The amount of heat exchanged equals H joules, the 

enthalpy change of the reacting system. Under these circumstances it can be shown that that the 

entropy change takes a simple form: 

Ssur = - 
 

 
     (3) 

Note that T must be constant if we are to use eqn (3) to calculate Ssur. 

The entropy change for the reacting system, S is caused by a change in the molecular structures: 
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S = (sum of entropy of products) – (sum of entropy of reactants) 

and the size and sign of S depends upon the size and complexity of the reactant and product 

molecules, which controls the way that energy is stored in the molecules.  

We can now re-state equation (1) as: 

Soverall = S - 
 

 
     (4) 

This equation is remarkable because it allows us to determine the entropy change overall using H 

and S of the reacting system. There is no reference to the entropy change of the 

surroundings on the RHS of this equation. T is the temperature of the laboratory in which the 

reaction is carried out. Later, we will link this equation to the Gibbs energy change of the reaction, 

G.  

 

4. The Second Law of Thermodynamics 

The term isolated system means a system in which there is no exchange of energy or matter with 

its surroundings. An example of an isolated system is a perfectly thermally insulated and tightly 

stoppered vacuum flask. 

We now state the Second Law of Thermodynamics in a form that involves spontaneous 

changes /processes and entropy: 

If a spontaneous change occurs in an isolated system, there is an increase in the entropy 

of the isolated system  

We can express this mathematically: 

Sisolated system > 0 

The increase in entropy is maximised when the isolated system reaches equilibrium.  

There are no known exemptions to the Second Law. If the system is not isolated, the overall 

entropy change associated with a process can only be calculated if we know ∆Ssur as well as ∆S for 

the system.  

Examples of equilibrium include: 

 Thermal equilibrium, as when a sample of metal or gas is heated up to a constant 

temperature 

 Phase equilibrium, as when water, ice and water vapour co-exist under a particular 

temperature and pressure 

 Chemical equilibrium, when reactant and product molecules achieve equilibrium, 

characterised by the concentrations in an equilibrium expression equalling K, the equilibrium 

constant, at that temperature.  

Assuming that the universe is an isolated system (and we don’t know that for sure), allows us to 

define the Second Law of Thermodynamics in another form: 
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A spontaneous change increases the entropy of the universe i.e.  Suni > 0 

Although this a catchy statement and it is easy to remember, it does not allow us to make any 

calculations of entropy changes because the universe is not at thermal equilibrium i.e. it is not at one 

temperature. For this reason, we cannot equate ∆Ssur with ∆Suni. There are many hotspots and 

coldspots in the universe and it may take 10100 years for the universe to attain equilibrium! (For 

completeness we may also add that since T and P is not constant in the universe the use of enthalpy 

as energy in equation (3) is inappropriate).  

The connection between the spread of energy and entropy is discussed in s.8 below. 

  

5. Calculating overall entropy change as a result of chemical reaction 

The applicability of the Second Law to isolated systems at equilibrium only, might appear to render it 

too impractical to use, but fortunately we have a ready-made practical arrangement that fits the bill – 

that of a chemical reaction taking place in an open vessel in a lab in which T remains constant. We 

may safely regard the combination of a reaction system and the laboratory surroundings as 

an isolated system. Consequently, if the chemical or physical change in the beaker is spontaneous 

and it reaches equilibrium, Soverall must be > 0.  

We have previously introduced an expression for the entropy change of the reaction system and 

that of the immediate surroundings for most ‘open vessel’ laboratory situations: 

Soverall = S - 
 

 
     (4) 

It follows that in order to generate Soverall > 0 during a spontaneous process, either: 

 S and the term - 
 

 
  must be positive; or  

 S or the term - 
 

 
  must be positive, with the term that is positive being numerically larger 

than the term that is negative.  

Since T is always positive, the sign of the term - 
 

 
 depends upon ∆H. We illustrate this by two 

examples, both of which appear in Unit 16. In both cases, we predict the sign of S (the entropy 

change of the reacting system) using the ideas of energy dispersal discussed in the book, p. 284. We 

then predict the entropy change of the surroundings (something we didn’t cover in Unit 16) using 

equation (4) above. 

 

 

 

 

 

 

 

 

 

EXAMPLE 1   

Exothermic hydration of copper(II) sulphate 

Our first example is that of a spontaneous exothermic reaction where S for the system is 

negative. An example is the reaction of anhydrous copper(II) sulfate with water: 

CuSO4(s) + 5H2O(l)  CuSO4.5H2O(aq)  (5) 

This is easily demonstrated. If white CuSO4(s) powder is added to a test tube and an equal 

volume of water added, the mixture gets so hot that test tube cannot be comfortably held with 

bare hands.  



 
 

7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 1   (continued) 

− 
∆𝐻

𝑇
 

Look at equation (4). The first term is S, the entropy change undergone by the reacting 

system. We cannot calculate an exact value of S using a simple equation, although it can be 

measured experimentally. From the work done in the book in Unit 16, we can predict the sign 

of S. Since reaction (4) involves a reduction in the number of species left to right, we predict 

that S will be negative. 

Now we turn to the term for the entropy change of the surroundings as a result of the 

chemical reaction. Heat is flowing from the reaction to the surroundings and this suggests that 

the surroundings will undergo an increase in entropy. Inspection of the term: 

confirms this prediction. T, the temperature of the surroundings does not change during the 

reaction, but H, the enthalpy change of reaction (4), is negative. Since ‘minus times minus is 

plus’, the - 
𝐻

𝑇
 term is positive overall. Since reaction (5) does proceed spontaneously at room 

temperature, we assume that the - 
𝐻

𝑇
 term is more positive than the H is negative so that 

overall, Soverall is positive as required by the Second Law for our isolated system of reaction 

and surroundings. 

EXAMPLE 2   

Endothermic reaction of barium hydroxide and ammonium chloride 

When barium hydroxide solid is mixed with ammonium chloride, the mixture becomes very 

cold and ammonia gas is evolved: 

Ba(OH)2.8H2O(s) + 2NH4Cl(s)   2NH3(g) + 10H2O(l) + BaCl2(s)  (6) 

The first term we examine is S, the entropy change undergone by the reacting system. 

Following the principles discussed in Unit 16, and since there are more product molecules 

than reactants, including the gas ammonia, we predict that S is positive.   

Reaction (6) is endothermic, H is positive and so the term - 
𝐻

𝑇
 is negative overall. Since 

reaction (6) does proceed spontaneously at room temperature, we assume that the S term 

is more positive than the - 
𝐻

𝑇
 term is negative, so that overall, Soverall is positive for our 

isolated system of reaction and surroundings. 

We may summarize the effect of H upon the entropy of the surroundings as follows: 

 If the chemical reaction is exothermic, then heats flows outwards and the entropy 

of the surroundings increases 

 If the chemical reaction is endothermic, then heat flows inwards and the entropy of 

the surroundings decreases 

but in every spontaneous process, whether endothermic or exothermic, the overall entropy 

of the system plus surroundings increases.  

Of course, we can easily think of a reaction in which Soverall would decrease, but such a 

reaction would not happen naturally: it would be non-spontaneous. 
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Fig. 16.3 Entropy changes for two spontaneous reactions, with the arrows showing the direction of heat flow. (a) The 

reaction of anhydrous copper sulfate and water is an exothermic reaction in which the reacting mixture undergoes a fall in 

entropy. (b) The reaction of barium hydroxide with ammonium chloride is an endothermic reaction in which the reacting 

mixture (‘the reacting system’) undergoes an increase in entropy. In both cases, the overall entropy of the reaction system 

plus surroundings increases, in accordance with the Second Law of Thermodynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

BOX 1: The Detonation of Nitrogylcerine 

There are also examples of spontaneous chemical reactions which are exothermic and in 

which there are more product molecules than the reactants. An example is the explosive 

decomposition of the dangerous compound nitroglycerine (see the book, Box 13.2, p.231) 

which is sensitive to shock even at room temperature: 

4C3H5(NO3)3(l)    12CO2(g)  +  10H2O(g)  +  6N2(g)  + O2(g)  (7) 

Reaction (7), is enormously exothermic, with Ho(6) = - 8620 kJ mol-1. Unfortunately, the 

standard entropy of one mol of nitrogycerine, (So(nitroglycerine)),  is unknown and so So for 

reaction (7) cannot be calculated, but since the reaction produces so many gaseous products 

we can predict that it is large and positive. The entropy of both reaction mixture and the 

surroundings both increase and reinforce each other, so that the overall entropy change is 

very large and positive. 

 
Fig. 16.4 In an explosion, gases are produced so rapidly that a pressure wave is produced in the surrounding air. 

Photograph © PhotoDisc/Getty Images. 
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6. Gibbs Energy change, G 

We start with equation (4). 

Soverall = S - 
 

 
     (4) 

If we multiply both sides of this equation by –T and re-arrange the order of the right-hand terms, the 

equation becomes: 

− Soverall =   −  S               (8) 

We now give − Soverall a new symbol, G: 

   − Soverall    (9) 

Substitution of (8) into (7) gives the famous Gibbs energy equation: 

  =   −  S    (10) 

In order to apply this equation, the system in question must be at constant pressure and 

temperature during the change, requirements that apply in most laboratory (‘open beaker’) 

experiments.  

As with equation (4), the RHS of this equation involves only the thermodynamic quantities of the 

reacting system, H and S – not of the surroundings. When the chemical species are in their 

standard states, equation (9) takes the familiar form: 

Go = Ho  −  So    (11) 

On carrying out calculations of Go (page 292 of the book) we consider the two components of 

equation (10), Ho  and −  So. Sometimes the terms reinforce each other and sometimes they are 

in opposition. When they are opposition, it is tempting to see Go as the outcome of a ‘fight’ 

between the two terms. The importance of equation (7) is that it reminds us that Go is not simply 

the result of a ‘contest’ between terms, but that it is itself an entropy term, albeit overall entropy 

change Soverall,  as opposed to the entropy change for the system.  

In order to calculate Go for a reaction we require both Ho and So, both of which are calculated 

from individual standard enthalpies of formation and standard entropies of the reactants and 

products of the reaction. Enthalpies of formation and standard entropies are to be found in the NIST 

chemical database (https://webbook.nist.gov/chemistry/). An example calculation is shown in 

Extension 15 (Appendix 1) of this website.  

 

7. Microstates and the Boltzmann interpretation of entropy 

The entropy (S) of ‘something’ is a measurement of how spread out energy is within ‘that 

something’. (This is easy to remember: ‘S is for spreading’). In Unit 16, we rationalized increases in 

entropy during a spontaneous reaction in terms of the increase in spreading of energy, either among 

more particles or in a greater volume of space. A more exact microscopic description of entropy 

involves the idea of microstates.  

https://webbook.nist.gov/chemistry/
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A microstate is the way that energy is distributed among a collection of molecules at an instant. If we 

have N molecules in a sample, we would specify the microstate by listing the energy of each 

molecule at that instant. A collection of molecules can only be in one microstate at a time, but the 

microstate will change an instant later as one or more molecules collide and exchange energy.  

Think of a single molecule that can exist with only four possible energies, 0, 1, 2 and 3 energy units 

respectively. The energies are represented by a ladder (Fig. 16.5(a)) and the precise energy level 

occupied by the molecule is indicated by a red circle. If the molecule possesses no energy (Fig. 

16.5(b)) it is assigned a molecular energy value of 0 units. The energy levels are equally spaced, and if 

the molecule occupies the first energy level (Fig. 16.5(c)) it has an energy of 1 unit, if it occupies the 

second level (Fig. 16.5(d)) an energy of 2 units and if the molecule occupies the third energy level 

(Fig. 16.5(e)) an energy of 3 units. 

 
Fig. 16.5: 16.5(b), 16.55(c), 16.5(d) and 16.5(e) show the four ways in which energy could be stored in a single molecule. 

Now think of a collection of just three molecules among which the energy is distributed.  The 

molecules are identical (e.g. three argon atoms) but to distinguish their energies we label them A, B 

and C. Any molecule is allowed to possess zero energy. In order to simplify things, we apply a 

restriction: the sum of the energies of A, B and C totals 3 units of energy in every case. Each 

particular combination of energy held by all three atoms is a possible microstate. There are ten 

possible microstates – ten ways of distributing the energy among the three molecules within the 

total energy limit of 3 units of energy - and these are shown in Table 1. We will also take for granted 

one of the fundamental assumptions of molecular thermodynamics: no one microstate is preferred 

and each is equally likely.  

The microstates in Table 1 have been organized into three groups, which are known as 

configurations. The three configurations are combinations of microstates with a common 

arrangement of energy and the microstates in a configuration are said to be ‘energetically equivalent’. 

The term ‘energetically equivalent’ means that the microstates in that group (configuration) have the 

same number of molecules with the same energy, and differ only in the identity of the molecules 

possessing that energy. For example, there are six microstates of configuration (i), which might be 

called the ‘2, 1 and 0 type of configuration’ because each of its microstates involve one molecule 

having zero energy, one molecule having one unit of energy and one molecule of two units of energy 

respectively; the difference between the microstates lies simply in the identity (A, B or C) of the 

molecule having those values. There are three microstates of configuration (ii), in each of which one 

molecule has all the available energy (3 units) with the other molecules having zero energy. There is 

only one microstate of configuration (iii), and in it each molecule has one unit of energy. 
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Table 1 The ten possible microstates for a collection of three molecules. Each microstate has the same total energy 

(three units). The microstates are organised into groups, known as configurations. Since the molecules A, B, and C are 

indistinguishable except in energy, each configuration contains energetically equivalent microstates. 

Microstate 
Molecule 

A 

Molecule 

B 

Molecule 

C 

Total 

energy 

Configuration Random probability that 

a microstate will have 

the configuration shown 

m1 0 1 2 3  

 

(i) 

 

 

60% 

m2 0 2 1 3 

m3 1 0 2 3 

m4 1 2 0 3 

m5 2 0 1 3 

m6 2 1 0 3 

m7 0 0 3 3  

(ii) 

 

30% m8 0 3 0 3 

m9 3 0 0 3 

m10 1 1 1 3 (iii) 10% 

Suppose that we were able to look inside the container holding our three molecules, A, B and C 

(‘the system’) and that we were able to measure their energy at an instant. Which of the microstates 

(m1 to m10) would the system be in? The system might be in m8 at one instant and in m2 a millionth 

of a second later. Since there are ten possible microstates and each are equally likely, the random 

probability of any one microstate occurring is 1/10. However, since the molecules are 

indistinguishable except in energy and there are six microstates of configuration (i), the probability of 

a microstate having configuration (i) is 6/10 or 60%. In other words, microstates of the ‘2, 1 and 0’ 

type of configuration represent the most probable arrangement of energy for our three molecules. 

In summary, the most probable configuration of molecular energies is the one with the 

largest number of energetically equivalent microstates. 

The reason that there are more microstates of configuration 1 than there are of group 2 is that 

there are more ways of distributing energy between any two molecules than there are ways of 

distributing energy in any single molecule. If we think of entropy as a measure of how much energy is 

spread out, we conclude that microstates of configuration 1 are of lower entropy than those of 

configuration 2. Microstates of configuration 3 are of the lowest entropy but there is only one 

microstate so that configuration is less probable. 

 

If we increase the number of molecules with 0, 1, 2, or 3 units of energy from 3 to 150, there are 

570 000 possible microstates. If we increase the number of molecules to N =1023 and repeat the 

above exercise, we would need an expanded version of table 1 with 1023 columns to register the 

molecules present from 1 to 1 x 1023. This generates an astonishingly vast number of possible 

microstates, much bigger than 10100 (10 followed by 100 zeros). It can be shown mathematically that 

as a result of this vast number there is one single configuration of energetically equivalent 

microstates that is so highly probable that it is extremely unlikely – to the point of practical 

impossibility - that the energy of the collection of molecules will be distributed in any other way1. In 

                                                           
1 1023 ‘real’ molecules will have even more possible microstates because molecular energy is not limited to a 

few values of energy. A molecule possesses electronic, vibrational, rotational and translational energy. All the 

types of energy are quantised, but in the case of translational energy (the kinetic energy of a molecule moving 

through space), there are a huge number of energy levels that are extremely close together and this vastly 

increases the number of possible microstates.  
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other words, and for all practical purposes and at a particular temperature, the energy of a large 

number of molecules always exists in the most probable configuration.  

 

Think of a gas sample containing 1023 molecules which have achieved thermal equilibrium amongst 

each other by collision. The energy we are interested in here is the translational (kinetic) energy of 

movement of the molecules through space. Once again, the most probable configuration is a 

distribution of energies that, statistically, will be followed by the whole collection of 1023 molecules. 

Although the energy of individual molecules will vary from one instant to another, the most probable 

configuration dictates that at a particular temperature, P1 % of the molecules will possess energy 1, 

P2 % of the molecules will possess energy 2, P3 % of the molecules will possess energy 3, P4 % of the 

molecules will possess energy 4, and so on. The overall distribution of kinetic energies amongst this 

vast number of molecules is remarkably reproductible and provided that N is large the distribution 

does not change perceptibly as the number of molecules changes. Since for a gas, ‘energy means 

speed’, the distribution of molecular speeds2 for gases is also entirely reproducible at a particular 

temperature (Fig. 16.6). The meaning of ‘reproducible’ in this context may be illustrated as follows. If 

every laboratory in the world were asked to experimentally measure the distribution of molecular 

speed in chlorine gas at 300 K, and such experiments were repeated hourly for a billion years, they 

would always – without exception – produce exactly the same curve as in Fig 16.6.  

 
Fig. 16.6 The spread of molecular speeds in chlorine and nitrogen gases 

 

 

8. Using microstates to rationalise the changes in entropy for 

spontaneous processes  

We now examine an imaginary spontaneous process. Suppose that we start with 1023 molecules and 

that magically one third of the molecules possesses three units of energy (as in the microstate of 

configuration group (ii) in Table 1); the other molecules possess zero energy. This is our imaginary 

starting system – our ‘reactant’. The molecules are now allowed to collide with each other and the 

exchange of energy between them occurs extremely rapidly. This results in a spontaneous re-

distribution of energy. The reason for the distribution is sheer chance: there are many more 

microstates in which molecules may share the available energy more widely than there are 

microstates in which molecules may only possess three units of energy. The ‘product’ of this 

spontaneous process is that all the molecules take up the most probable configuration of 

energetically equivalent microstates, and such a distribution would be of lower entropy than the 

system we started with. Macroscopically, we describe this by stating that the system has reached 

equilibrium. Equilibrium is the end product of the spontaneous process but it is simply the bulk 

manifestation of the fact that the molecules have reached the most probably energy distribution. The 

movement towards equilibrium is statistically driven, meaning that molecules will spread 

                                                           
2 See p. 163, Unit 10, in the book. 
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themselves over more microstates simply because they are available and it is more likely for them to 

do this.  

Although our example is imaginary, since the starting energy distribution described could never be 

achieved in practice, it is believed this is the mechanism by which all spontaneous processes achieve 

equilibrium.  During a physical or chemical change, the number of available microstates 

increases and energy becomes more spread out and so, overall, the entropy increases.  

 

9. Why raising the temperature of a material raises its entropy 

In the book we stated that increases in temperature always increases entropy and we can now 

understand this by looking at the molecular level. Consider the heating of a substance, which causes 

a rise in temperature. When a substance is heated, the average energy of its molecules increases. 

This increases the number of energy levels that the molecules in the substance are now able to 

occupy. In other words, the number of possible microstates increases. This is simplistically shown in 

Fig 16.7, where only one type of energy is shown. At the higher temperature, some of the ten 

molecule molecules represented can occupy higher energy levels in addition to the lower ones: they 

can occupy more energy levels (i.e. the molecules can occupy a greater range of microstates) and it 

is statistically probable that they will do so. The average energy of the molecules and the spread of 

that energy in the most probable configuration is greater at the higher temperature. Entropy, an 

index of such energy dispersion, is therefore greater at the higher temperature.    

 
Fig. 16.7 Simplified explanation for the increase in entropy of a substance that arises from an increase in temperature. At 

the higher temperature, (b), more of the molecules have enough energy to occupy higher levels. The range (the spread) of 

energy levels accessible to molecules is therefore much greater at higher temperature. 

 

 

10. Why increasing the volume in which molecules are contained 

increases entropy 

In the book, we also stated that increases in volume increase entropy and our next example relates 

to the expansion of a gas. Take one of the simplest cases of expansion: a gas which spontaneously 

expands from one container into a second (previously evacuated) container at constant temperature 

(Fig. 16.8).  (The constant temperature might be achieved by placing the containers in a tank of 

water maintained at constant temperature by a thermostatically controlled heater). The gas expands 

into the second container, but its temperature (and therefore its total energy) remains constant. 
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Therefore, the explanation of the increase in entropy is different from that of a material which 

undergoes an increase in temperature.  

  
Fig. 16.8 Expansion of a gas under constant temperature (isothermal) conditions. (a) Flask filled with gas; the right-hand 

flask is evacuated. (b) The tap connecting the two flasks is opened. Very quickly, the gas spreads out into the right-hand 

flask. 

 

Once the tap in Fig. 16.8 is opened, the gas molecules are no longer held back and this allows them 

to spread out rapidly because the molecules are travelling at high speed. The increase in entropy 

associated with this expansion may then be explained in terms of the same amount energy being 

spread out in a greater volume.  

In section (8), we have explained entropy changes in terms of the availability of more microstates. 

But why should molecules being dispersed over a greater volume result in an increase in the number 

of microstates for the ‘end system’? The answer to this question is very surprising. Perhaps contrary 

to our intuition, it can be shown theoretically that when the volume of a collection of molecules 

increases, the energy levels of the molecules get closer together (Fig. 16.9) so that many more levels 

are available to be occupied by molecules for the same total energy. This results in trillions of 

molecules spontaneously occupying a greater variety of new energy levels simply because it is 

overwhelmingly probable for them to do so. Gas molecules spread into the second flask and in doing 

so the energy they carry spreads out more. Once again, the spreading out of the collective energy of 

the molecules microscopically results in the macroscopic observation that the entropy increases 

overall. In practice, this means that the gas will spread out spontaneously throughout the two 

containers to assume the new most probable configuration of molecular energies, and it extremely 

unlikely (to the point of practical impossibility) that the molecules will assemble in one container 

more than the other. 

 
Fig. 16.9 The increase in the number of possible microstates during the expansion of a gas. The ‘density’ or packing of 

energy levels of molecules in a gas increases with volume. This means that molecules have ‘a choice’ of many more energy 

levels within their ‘energy budget’. 

Gas expansion may also result from chemical reaction, as when more molecules in the gaseous state 

are produced than we started with, as in the dissociation of ammonium chloride: 

(a) (b) 
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NH4Cl(s)  NH3(g) + HCl(g) 

The volume of the system increases so once again, the number of possible microstates increases.  

 

 

 

 

 Boltzmann and Entropy 

 

 

 

 

 

11. The Gibbs energy change, G and spontaneous change 

As we have seen, there is a simple relationship between the change in Gibbs energy change of a 

process, G, and the overall entropy change of system plus surroundings: 

G = -TSoverall    (9) 

This relationship is not often practically useful, but it does allow us to come to the two important 

conclusions about Gibbs energy changes stated (but not derived) in s.16.6 (p. 285) in the book.  

The Second Law states that for a spontaneous process within an isolated system, Soverall is always 

positive. T (in K) is always positive (there is no such thing as negative temperature in kelvin) and so 

the product -TSoverall must always be negative. Since G = -TSoverall, G for a spontaneous change 

must always be negative. If G is negative, this means that the Gibbs energy of the reacting mixture 

(G) must fall during a spontaneous reaction and G continues to fall until equilibrium is reached, at 

which point G remains constant. In summary, we have arrived at our two practically important 

statements about Gibbs energy which apply at constant temperature and pressure: 

 When a spontaneous reaction is moving towards equilibrium, the total Gibbs 

energy (G) falls and so G is negative 

 At equilibrium G does not change and so G = 0 

Unless a process (such as a chemical reaction) involves a drop in Gibbs energy, it will not be 

spontaneous (Fig 16.10).   

BOX 1: Boltzmann and Entropy 

It was Ludwig Boltzmann (b.1844), an Austrian physicist, who established that the 

greater the number of microstates (W) the greater the entropy (S). This is formally 

expressed in the famous Boltzmann equation: 

S = k 1nW    (12) 

where k is the Boltzmann constant and 1n W is the natural log of W. This equation has 

been adapted and applied to many different systems. Boltzmann’s work founded a new 

subject known as statistical mechanics and his students included Svante Arrhenius and 

Walter Nernst. Sadly, Boltzmann suffered from depression and he committed suicide in 

1906. His gravestone bears the famous Boltzmann equation. 
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Fig. 16.10 Changes in Gibbs energy during a reaction. (a) Spontaneous reaction at temperature T, in which the 

reacting system moves from a higher Gibbs energy to a lower Gibbs energy. G(start to equilibrium) is negative. (b) 

Non-spontaneous reaction at temperature T. If the reaction were to take place, G(start to equilibrium) would be 

positive. Therefore, the proposed reaction is not spontaneous: it does not happen naturally. 

 

Although we didn’t mention this in the book, there is new nomenclature that applies here. Reactions 

(or processes) where G is negative are said to be exoergic, just as a reaction for which H is 

negative is said to be exothermic. A reaction for which G is positive is said to be endergonic 

(compare this to endothermic reactions, when H is positive).  

As a footnote, we may note that some scientists do not regard Gibbs energy as a true energy. 

Although G has the units of energy, Gibbs energy is not conserved like enthalpy, H.  

Gibbs energy changes are both convenient and useful, but they are only ’messages’ about the 

changes in entropy that occur below the surface of our laboratory experiments. The requirement 

that G is negative for a spontaneous process is simply a consequence of the Second Law of 

thermodynamics and just as we can plot the change in total Gibbs energy of a reaction proceeding to 

equilibrium (as in Fig. 16.3, p286 in the book) we can produce an equivalent plot of the way that the 

entropy of the system plus surroundings (Soverall) changes as reaction proceeds (Fig. 16.11). Soverall is 

maximum at equilibrium, the point at which G (for the reaction system) reaches a minimum. 

 
Fig. 16.11 The change in overall entropy of reaction system and surroundings as a reaction moves towards equilibrium X. 

At equilibrium, Soverall is at a maximum but G, the Gibbs energy of the system (not shown), is a minimum. 
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12. Go and spontaneous processes 

In the book we have taken great pains to emphasise that the universal criterion for a spontaneous 

process is that G is negative. Since spontaneous chemical reactions are being driven towards 

equilibrium, an indicator that G is will be negative as the reaction progresses is that G(start to 

equilibrium) is negative. The standard change in Gibbs energy accompanying a reaction, Go, is not a 

general criterion for spontaneous change and we gave an example of a spontaneous reaction (see p. 

288) where Go is positive but G(start to completion) is negative. However, we noted that in the 

case where Go for a process is negative, G(start to completion) for that process will also be 

negative, since (as inspection of Fig. 16.4 in the book shows) G(start to equilibrium) will always be 

at least as negative as Go. For this reason, some authors use a negative value of Go, the standard 

change in Gibbs energy, as an indicator of a spontaneous process – whereas in the book, we have 

used Go solely as a means to decide whether or not a reaction has a large equilibrium constant i.e. 

a reaction for which K > 1. 

  

Using Go to predict spontaneity has the advantage that it is straightforward to calculate Go from 

thermodynamic data.  It is also intuitively correct: a large negative Go means a large equilibrium 

constant, K, and if we start with pure reactants the system has a ‘long way to go to reach equilibrium 

where products dominate reactants’. It is therefore reasonable to expect that reactions for which K 

is very large will be spontaneous en route to equilibrium. We should remember though, that while a 

negative value of Go for a reaction confirms that the reaction is spontaneous, the reverse does not 

apply and a positive value of Go does not mean it is non-spontaneous.  

Extension 15 (Appendix 1) looks at the calculation of the equilibrium constant for the reaction of 

2SO2 + O2 → 2SO3 at various temperatures.  

 

 

EXAMPLE 3 
Reactions where Ho is zero 

The decomposition  of silver chlorite is an interesting chemical reaction because its enthalpy 

change is close to zero: 

AgClO2(g)  Ag(s) + 1/2Cl2(g) + O2(g)       Ho  0 (15) 

 

Show that for this reaction So  = So
overall. 

 
Taking Ho as zero, the equation Go = Ho - TSo reduces to  Go  = - TSo.  Since Go  =        

- TSo
overall (this applies to every reaction), the following applies to the decomposition of silver 

chlorite: 

 - TSo  = -TSo
overall; cancelling temperature on both sides gives:  

So  = So
overall 

In other words, where there is no enthalpy change, the entropy change of the reaction is also the 

overall entropy change (of system plus surroundings) caused by the reaction. 
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13. Is there a driving force of spontaneity? 

If someone asks why spontaneous processes happen (and why non-spontaneous processes do not 

normally happen) what would you say? We can re-phrase this question as a request to identify a 

‘driving force of spontaneity’ –  the ‘thing’ that forces spontaneous processes to move in the 

direction they do.  

 

One candidate is kinetic energy. Without kinetic energy, molecules could not physically collide or 

disperse when they are given the opportunity.  

 

If we look back at the topics studied so far in this Extension, other candidates present themselves 

(Fig. 16.12) and a pause to look at them also gives us a chance to revise some of our previous work. 

 

At the bottom of this hierarchy is the apparent requirement that at constant temperature and 

pressure, a reacting system undergoing spontaneous change must lose Gibbs energy, and this is very 

useful to chemists who routinely carry out calculations of ∆G on the chemical reaction of interest. 

However, such a requirement is simply a consequence of the increase in entropy of an isolated 

system (e.g. a reaction taking place in an open lab) that accompanies a spontaneous change. Since 

entropy is a measurement of energy dispersion, the tendency of energy to spread out in 

spontaneous change should occupy a higher level in our hierarchy. Lastly, this dispersion of energy is 

itself a consequence of the way that vast numbers of atoms, molecules or ions behave statistically: 

particles distribute their energy in the most statistically probable way and that happens to be one in 

which they spread out their energy as much as possible across the available microstates.  

 

Some scientists do not like the idea of identifying a driving force. For them, a spontaneous process is 

one where the molecules follow the most probable route. It is sobering to realise that such 

behaviour has no grand purpose – it is purposeless. There is no magic force at work, simply the laws 

of chance operating on a very large scale.  

 

 
Fig. 16.12 Hierarchy of ‘driving forces’ for spontaneous processes 

 

 

 

14. Gibbs free energy and the thermodynamic stability of substances 

Just as the standard enthalpy of formation of a substance is defined as the standard enthalpy change 

when that substance is formed from its elements in their standard states (see Unit 13) the standard 

Gibbs free energy of a substance is defined as equal to the standard Gibbs energy change of 

formation, fGo of that substance, formed from its elements in their standard states. 
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Tables of fGo are available in reference books, or fGo may be calculated from the separate standard 

entropy and enthalpy changes of formation for that substance.  

For example, fGo (H2O(g)) is defined as the standard Gibbs energy change for the reaction in which 

1 mol of gaseous water is formed its elements: 

H2(g) + 
 

 
O2(g)   H2O(g)   Go = fGo (H2O(g)) = -228.6 kJ mol-1 at 298 K 

If fGo is negative, then the reaction in which the substance is formed from its elements has a large 

equilibrium constant at the temperature at which the data applies (often, 298 K).   

 
Fig. 16.13 Standard Gibbs energy of formation of selected gaseous organic compounds. From L to R: ethyne (acetylene); 

ethene (ethylene); ethane; benzene; methanol. 

 

fGo values are indicators of the ‘thermodynamic stability’ of substances. Fig. 16.13 displays fGo for 

several organic compounds, including three (ethyne, ethene and benzene) that contain multiple 

carbon to carbon bonds. Compounds whose molecules contain multiple bonds are described as 

‘unsaturated’ and for hundreds of years it has been known that unsaturated compounds are ‘eager’ 

to react so as replace their multiple CC bonds with single (C-C) bonds. Ethyne, ethene and benzene 

have positive fGo values and so are said to be more thermodynamically unstable than the other 

compounds.  

Ethyne is the least thermodynamically stable compound shown. Ethyne may be converted to ethane 

in two stages: 

CHCH(g) + H2(g)  CH2=CH2(g) 

followed by: 

CH2=CH2(g) + H2(g)  CH3CH3(g) 

At each stage, CHCH and CH2=CH2 are losing Gibbs energy, finally arriving at ethane, for which 

fGo = -32 kJ mol-1. 
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15. Predicting whether a reaction will occur using standard electrode 

potentials 

In this section we make the link between cell potential and the change in standard Gibbs energy 

(Go) for a reaction.   

 

In the unit on reduction and oxidation (p.113 in the book), we showed how standard electrode 

potentials, Eo, may be used to predict whether or a reaction would occur – although we cannot 

predict how fast the reaction would proceed. The procedure involved in predicting whether or not 

an ionic reaction will occur involves writing down the two half reactions involved in the overall 

reaction. For example, in predicting whether or not the reaction: 

 

H2(g) + Fe3+(aq)  2H+(aq) + Fe2+(aq)   (16) 

 

will occur, we first identified the half reactions involved and wrote them down with the most 

reducing half reaction (the one with the most negative or least positive Eo) on top: 

 
2H+(aq) + 2e-  H2(g)   Eo = 0.00 V 

Fe3+(aq) + e-  Fe2+(aq)                        Eo = +0.77 V 

 
 

Finally, we drew anticlockwise arrows. The direction in which the arrows pointed showed that the 

predicted reaction involved the oxidation of H2(g) and the reduction of Fe3+(aq), so that the reaction 

(16) does occur.  

The meaning of ‘occur’ here is that the equilibrium constant of the reaction is large. We should not 

therefore be surprised to be told that Eo and Go are related. Indeed, this is necessary or else they 

might make different predictions!  

Although it is not obvious, the ‘anticlockwise arrow’ routine works because we are, in effect, 

predicting whether or not an electrochemical cell consisting of the two electrode systems 

(H2(g)/H+(aq) and Fe3+(aq)/Fe2+(aq) respectively) will generate a positive cell potential. In the above 

example, and following the method of calculating cell potentials given in the book on p.111, an 

electrochemical cell with the standard Fe3+(aq)/Fe2+(aq) electrode as the cathode and the standard 

H2(g)/H+(aq) electrode as the anode would produce a standard cell voltage of: 

Eo
cell = +0.77 – 0.00 = +0.77.  

It is the fact that the cell voltage is positive that is important. The relationship between between Eo
cell 

(the standard cell potential) and the change in standard Gibbs energy change (Go, J mol-1) for the 

overall reaction is that: 

Go = - nFEo
cell        (17) 

where n is the number of electrons transferred in the reaction (for reaction 15, n = 2) and F is the 

Faraday constant, with the units of electrical charge (in coulombs) per mole, written as C mol-1. F = 
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96485 C mol−1. Equation (16) is called the Nernst equation. Eo
cell has the unit of volts. The Nernst 

equation shows that if Eo
cell, the standard cell potential, is positive, then Go for the reaction will be 

negative. Since a negative Go means a large equilibrium constant, in predicting a positive Eo
cell 

we are predicting K > 1. We are thus reassured that ‘anticlockwise’ rule is simply an indirect way 

of calculating the standard Gibbs energy for a reaction. 

To illustrate the use of the Nernst equation, we apply it to equation (16): 

Go = - nFEo
cell  =  -2 x 96485 x (+0.77) = -148587  -148000 J mol-1  

(Note on units: since 1V = 1 Joule per coulomb, the units of Go  are C mol-1 x J C-1. The coulombs 

cancel, giving the units as J mol-1) 

The standard Gibbs energy change for reaction (15) is thus about -148 kJ mol-1. If Eo
cell was obtained 

at 298 K, then the calculated value of Go also applies to 298 K.  

 

16. Thermodynamically and kinetically controlled reactions  

Whether we are in the laboratory or scaling up a chemical reaction on an industrial scale, a good 

percentage yield of product is always desirable. A good yield of product depends on favourable 

thermodynamics and kinetics. By thermodynamics we mean a large equilibrium constant. By kinetics 

we mean the speed at which equilibrium is achieved. If K is small then the rate of reaction is 

generally irrelevant because the yield will be small anyway3 at the temperature being used, but 

equally a slow reaction is not commercially viable. 

 

A study of some reactions in which there are two possible products from the same reactants, brings 

the thermodynamic and kinetic factors into sharp focus. In these cases, it is possible to use a lower 

temperature to produce more of a less thermodynamically stable product.  

 

Suppose that two spontaneous reactions are in competition; reactions in which two possible 

products could be produced from the same reactants, such as: 

 
In this example, a mixture (labelled A) of 1,3-butadiene and hydrogen bromide may produce one of 

two isomers: either B (3-bromo-1-butene) or C (1-bromo-2-butene). To make the molecular 

structures clearer, we may depict the reaction using ‘ball and stick’ diagrams in which the bromine 

atoms are coloured red: 

 

                                                           
3 There is an exception to this rule. It is possible to produce good yields even if K is low, by physically 

removing the product from the reaction mixture, as in the Haber-Bosch process (book p278) when ammonia 

is liquified or in some organic chemistry preparations when the product is volatile and is distilled off (book, 

p271). In these cases, since the product is being removed the reaction mixture, the flask re-establishes 

equilibria and so produces more product. The cycle is repeated and the product samples collected together.   
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The formation of C involves a more negative G over a wide range of temperature (this makes C 

more thermodynamically stable than B) and provided that equilibrium is reached, C is expected to 

dominate the product mixture. This is the case at room temperature. The thermodynamics of the 

reaction are depicted in Fig. 16.14.  

 
Fig. 16.14 The changes in Gibbs energy for two possible products (B and C) from the reaction mixture (labelled A) of 

1,3-butadiene and HBr.  

 

At lower temperature things are different. At -80 oC the A  C reaction is much slower than A  

B (which has the lower activation energy) and equilibrium is not achieved over the timescales of the 

experiment, so even though C is thermodynamically preferred, the product mixture contains mostly 

B. If the mixture at -80 oC is allowed to warm up to room temperature, then the product mixture 

changes: equilibrium is slowly reached and the equilibrium mixture is dominated by C.  

This case is expressed as follows: at the low temperature, the reaction of 1,3-butadiene with HBr is 

kinetically controlled, but at higher temperature it is thermodynamically controlled.  
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Answers 

(a) This is an example of thermodynamic V kinetic control. The relative G values show that B 

is more stable than A. At 25 oC, the rate of reaction (1) > rate of reaction (2) presumably 

because it has the lowest activation energy, EA. Reaction (2) does not reach equilibrium at 25 
oC so A dominates the product mixture.  At 80 oC, rate (1) is faster than it was at 25 oC, 

but reaction (2) is now sufficiently fast enough to cause the reaction to reach equilibrium in 

a reasonable time, an equilibrium in which the more stable isomer (B) dominates.  

(b) Even at 25 oC equilibrium will eventually be achieved and so much of A will break down into 

B, but it will take very much longer at the lower temperature.  

 

Further reading 

1. Elements of Physical Chemistry, by Peter Atkins and Julio De Paula, OUP, 2017. A more 

advanced textbook which elaborates upon many of the subjects of this unit.  

 

2. There are many websites giving introductions to this subject. For example, Dr Stephen 

Lower’s website, http://www.chem1.com/acad/webtut/thermo/entropy.html 

 

 

 

 

 

EXERCISE 16A 

When cyclopentadiene and furan react, the resulting mixture contains two isomers, A and 

B: 

 

The isomers differ in the position of the hydrogen atoms, either pointing upwards (as in 

A) or downwards (B).  G for reaction (2) is more negative than for reaction (1) and this 

is true over a wide range of temperature. Use this information to suggest an explanation 

for the following: 

(a) The product mixture contains more A than B at 25 oC, but at 80 oC, B dominates.    

(b) The mixture at 25 oC very slowly converts to a mixture dominated by B.   

(1) 

(2) 

http://www.chem1.com/acad/webtut/thermo/entropy.html

