Extension 18: Unusual Alkanes

I. Prerequisites

The key ideas required to understand this section are:

Торіс	Book page	
Alkanes	318	
Percentage composition	127	
Enthalpy of combustion	228	
Concentration as percentage composition	151	
NMR	409	

2. Organic compounds

Organic compounds have been made in a number of weird and wonderful shapes. Cubane and basketane have been given trivial names that exactly describe their structures:

In the following ball and stick models of cubane and basketane hydrogen atoms have been omitted for clarity.

Cubane (first made in 1964) is a strained molecule, because the geometry around each carbon atom is very far from the idealized tetrahedral angle of $109\frac{1}{2}^{\circ}$. However, cubane has been shown to be stable to air water and most common reagents (Table 1).

Table I Properties of cubane

Property	Value
Toxicity	Non-toxic
Decomposition	> 220°C
Density	1.29 g cm ⁻³
Melting point	130-131°C
Boiling point	133°C
Solubility at 25°C	18% w/w (in hexane)
Enthalpy of formation	602 k] mol ⁻¹

Cubane-type molecules have potential applications as propellants and explosives, and derivatives of cubane might have applications in fighting the AIDS virus.

Revision questions

- I. What is the molecular formula of cubane?
- 2. What is the percentage composition of carbon in the molecule?
- **3.** What is an approximate C-C-C bond angle in cubane?
- 4.
- (i) Write a balanced equation for the complete combustion of cubane.
- (ii) How much heat is released by the combustion of exactly 5 g of cubane? (Use p. 225 for additional data.)

5. If the density of hexane is 0.660 g cm⁻³ at 25°C, what mass of cubane could you dissolve in 150 cm³ hexane?

6. What would you expect the 'H-NMR of cubane to look like?

Answers

 $I.C_8H_8$

- 2.92.3%
- **3.** 90°

4.

(i) $C_8H_8(s) + 100_2(g) \rightarrow 8CO_2(g) + 4H_2O(l)$ (ii) Using Hess's law: $8C(s) + 4H_2(g) \rightarrow C_8H_8(s) \Delta H^{\theta} = 602 \text{ kJ mol}^{-1}$ (1) $C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^{\theta} = 393.51 \text{ kJ mol}^{-1}$ (2) $H_2(g) + \frac{1}{2}O_2 \rightarrow H_2O(1) \Delta H^{\theta} = -285.83 \text{ kJ mol}^{-1}$ (3) $C_8H_8(s) + 100_2(g) \rightarrow 8CO_2(g) + 4H_2O \Delta H^{\theta} = ?$ Multiply equation (2) by 8, multiply equation (3) by 4 and add both: $8C(s) + 8O_2(g) \rightarrow 8CO_2(g)$ $4H_2(g) + 2O_2 \rightarrow 4H_2O(g)$ $8C(s) + 8O_2(g) + 4H_2(g) + 2O_2 \rightarrow 8CO_2(g) + 4H_2O(g)$ (1) ΔH^{θ} $= (8 \times -393.51) + (4 \times -285.83)$ = -4291.4 kJ For $C_8H_8(s) \rightarrow 8C(s) + 4H_2(g) \Delta H^{\theta} = 602 \text{ kJ mol}^{-1}$ Add these two equations and simplify: $\frac{8C(s)}{2} + 8O_2(g) + \frac{4H_2(g)}{2} + 2O_2 + C_8H_8(s) \rightarrow 8CO_2(g) + 4H_2O(g) + \frac{8C(s)}{2} + \frac{4H_2(g)}{2}$ Then $C_8H_8(s)$ + 100₂(g) \rightarrow 8CO₂(g) + 4H₂O(l) ΔH^{θ} = -4291.4 + (-602)= -4.89 + 10³ kJ mol⁻¹ This value is for I mol (or 104 g) C₈H₈ For 5 g, enthalpy change is $5/104 \times -4.89 \times 10^3 = -235$ kJ

5. 150 cm³ hexane has a mass of 150 × 0.660 g. It will dissolve a maximum of 18% w/w or 150 × $0.660 \times 0.18 = 17.8 \text{ g } C_8 H_8$.

6. A single absorption at δ 4.0 (all protons are in the same chemical environment).