
 

 

Part III - How To in JASP 

The examples in this How To have been made in JASP version 0.9.2.0 (JASP Team, 2016), 
but if you are working with an earlier or later version, the options should be similar. The 
JASP website itself also has several explanations on how to use the program. These might 
also be useful to check out: 

 https://jasp-stats.org/getting-started/ 
 https://jasp-stats.org/how-to-use-jasp/ 

 
Before you carry out any inferential statistics, it is important that you visually inspect your 
data by making some plots. You can then calculate some descriptive statistics. JASP has a 
few options to give you these descriptive statistics. 

1.  How To: Descriptive Statistics 

1.1 Open data file in JASP 

Older versions of JASP can only open .csv files, but if you are working with version 0.8.0.0 or 
later, you should be able to open .ods files (OpenDocument Spreadsheet), .txt files or .sav 
files (SPSS data files) as well. If you have an Excel file (extension .xlsx), it is probably easiest 
to convert it to a .csv file. Please see Practical 1B for details on how to save an Excel file as a 
.csv file. After you have opened JASP, go to File > Open and open your .csv (or .ods, .txt, or 
.sav) file. 

After opening the data, you should always inspect the file and, if necessary, change the 
measurement scales and add the appropriate labels (also see Practical 1A, assignment 3). 

As explained in Practical 1A (assignment 4), you need to save your data as .jasp to keep all 
the changes to the data, the analyses, and any notes that were added in one file.  

1.2 Descriptives 

Before you carry out any inferential statistics, it is important that you calculate some 
descriptive statistics. In JASP, it is very straightforward to calculate the mean, median, range 
(this gives you the minimum and the maximum), minimum, maximum and standard 
deviation. Go to Descriptives > Descriptive Statistics, and move the dependent variable into 
the Variables box on the right. As explained in Practical 2A (assignment -5) you can split the 
results by your independent variable, which in the example in Figure III.J.1 is Group. 

 

https://jasp-stats.org/getting-started/
https://jasp-stats.org/how-to-use-jasp/
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Figure III.J.1 Descriptives menu in JASP 

If you click on the Statistics option in the bottom of the menu, you will get a menu with the 
most common descriptive statistics (central tendency, dispersion, and distribution), as can be 
seen in Figure III.J.2. Select the descriptives that you need. 

 

 

Figure III.J.2. Statistics option in the Descriptives menu 
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1.3. Plots 

In addition to calculating descriptive statistics, it is also important to visually inspect your 
data by making plots. When you are dealing with interval variables only and you mainly want 
to examine potential relationships between variables, a scatterplot is the best option. A 
simple scatterplot can be created by going to Plots and in the menu that is shown in Figure 
III.J.3 select Correlation plot. 

When you have an independent nominal variable, like Group, and you have selected this in 
the Split option above, you will get separate plots for each group. When nothing is moved to 
the Split field, the analysis for all participants will be shown. 

 

 

Figure III.J.3. Plots option in the Descriptives menu. 

A good way to visualize data, especially when comparing groups, is the Boxplot. For this, you 
can check the Boxplots option. Again, when you have included an independent nominal 
variable, you will get a boxplot for each group separately. This gives you the opportunity to 
compare the distribution of the groups, side by side, as in Figure III.J.4. 
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Figure III.J.4. Boxplot showing the dispersion in proficiency scores in group 1 (left) and group 2 (right) 

1.4  Calculating z-scores 

Sometimes you would want to report on z-scores, for example in case you want to know 
how many standard deviations each participant is away from the mean. JASP allows you to 
create a formula that adds a column to your data set with the z-score for every participant. 
You can add this new variable by clicking on the plus-symbol that can be found next to the 
last column of your data set (see also Practical 3A, assignment 4, for an example). Drag and 
drop the following to the formula window: 

 the dependent variable (DV) 
 - 
 mean 
 DV 
 / 
 σy 
 DV 

It should now read: ((DV - mean(DV)) / σy DV.  

To complete your action, click on Compute column. You now have a column with z-scores for 
every participant. 

In addition to the descriptives mentioned here, it is important to check the assumptions to 
find out whether you are allowed to conduct the (parametric) test you were aiming for. 
Checking assumptions will be the main topic of the next How To. 
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2.  How To: Check Assumptions 

Before you carry out inferential statistics, you need to look at the descriptive statistics and 
check the relevant assumptions for the different parametric tests. This How To will only deal 
with the practical aspect of how to check some of the assumptions in JASP. For a list and 
details about all of the assumptions, see Section 4.6 in Part I of the book.  

2.1  Checking for normality with interval data 

Imagine you are interested in two groups of language learners, a beginner group and an 
advanced group. They have proficiency scores on a scale from 1 to 100 obtained by means 
of a multiple choice test. For this design, which can be analysed using an Independent 
Samples t-test, we would have to check normality for each group separately.  

A good place to start is by looking at histograms of the data (per group!) and to check 
whether their shapes approximately follow the bell-shaped curve of the normal distribution. 
To do this go to Descriptives > Descriptive Statistics, and you get the same menu as the one 
in Figure III.J.1 in the How To Descriptive Statistics Chapter. In the Variables box you put 
your dependent variable, in this case the proficiency score. In the Split box, you put the 
independent variable, Group in this case. You can also look at all of your data together, 
without selecting an independent variable, but usually, you are interested in the distribution 
of each individual group. 
 The distribution plots under Plots will give a first impression of the distribution of the 
data. These kind of plots are also called histograms. You can select Display density or decide 
to leave it unchecked. See Practical 3C (assignment 3) for more information on how to 
interpret this difference.  
Next, we’re going to look at the values of Skewness and Kurtosis, and how much they 
deviate from zero. Under Statistics, you can check the Skewness and Kurtosis boxes. This 
will give you both values and the standard errors belonging to these values. With these you 
can calculate the z-scores of skewness and kurtosis by hand, by dividing the skewness and 
kurtosis values by their standard errors (See Practical 3A for more information). 
 Finally, you could perform a Shapiro-Wilk for each group and make sure that these 
are non-significant to ascertain that your data are normally distributed. For this test of 
normality in a case of two groups (one nominal independent variable with two levels), you 
can go to T-tests > Independent Samples T-test, add the dependent variable in the 
Dependent Variables box, and the Independent variable in the Grouping Variable box. 
Uncheck the default Test Student, and check the option Normality under Assumption Checks 
(Figure III.J.5).  
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Figure III.J.5. Screenshot of the menu of the Independent Samples t-test 

 

In the output that you generated under Independent Samples t-test you should look for the 
table as shown in Table III.J.1. You will get a significance value for the Shapiro-Wilk. For 
both groups, the significance values are ps > 0.54. The chance of incorrectly rejecting the 
null-hypothesis is thus rather large in both cases. Therefore, we do not have to reject the 
null-hypothesis and can conclude that the data of both the groups are approximately 
normally distributed.  

Table III.J.1 Tests of normality 

 

It is always important to use various ways to check your data for normality. Table II.J.2 in 
Practical 3 of the book provides a rough guideline on how to check for normality with 
different sample sizes. The Shapiro-Wilk in the example above is the procedure for the 
Independent Samples t-test. Note that for the Paired Samples t-test, i.e. when you are 
testing one group where each participant has two scores, the Shapiro-Wilk is done on the 
difference between the two dependent variables. Also, in JASP, the Shapiro-Wilk can only be 
done for t-tests. For correlations, the option to check assumptions is not given. In that case 
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you are limited to checking histograms and the z-scores of skewness and kurtosis. One way 
around it is to check normality of the variables you want to correlate under One Sample t-
test. For linear regression and for the ANOVA in JASP, the assumption of normality applies to 
the residuals (see Section 6.2 in Part I for details). This will be explained in the How To 
ANOVA and the How To Regression chapters.  
 In case of violations of normality, you should opt for a non-parametric alternative. 
See Sections 5.2.1, 5.3.2 (especially Table I.5.9), and 7.4 (especially Table I.7.9) in Part I for 
an overview of tests that should be used in case one or more assumption of are violated. 
 

2.2  Homogeneity of variance / Homoscedasticity 

For mean comparisons, homogeneity of variance is an important assumptions. For 
correlations and regression analysis, a similar assumption is referred to as homoscedasticity. 

2.2.1.  Homogeneity of Variance 

For the dataset with beginner and advanced learners, we want the variation to be similar in 
both groups and we can use Levene’s test to assess equality of variance (see Sections 4.6 
and 5.3.2 in Part I for more details on this assumption). For the Independent-Samples T-
test, you can find this under Assumption Checks, where you can tick the box for Equality of 
variances (see also Figure III.J.5). In the output window, you look for the table that is 
similar to the one in Table III.J.2. 

Table III.J.2. Outcome of the Levene’s test 

 

The output for our example shows that the chance of incorrectly rejecting the null-
hypothesis is relatively large (16%). Therefore, we can assume equal variances in this case. 
If the test had been significant, we would have to use a Welch’s adjustment to the 
independent samples t-test. (see Section 5.3.2 and 7.4 in Part I, and Practical 3A 
(assignment 6c) in Part II for details).  

2.2.2  Homoscedasticity 

Homoscedasticity can best be assessed by creating a scatterplot and, if preferred, adding a 
regression line to the plot (see Section 6.4 in Part I for details on the concept of 
homoscedasticity and on how to assess homoscedasticity from a scatterplot). For the 
following example, imagine a researcher wants to examine the relationship between age of 
acquisition and proficiency score. To make a scatterplot with two interval variables, we go to 
Regression > Correlation Matrix, add the two interval variables to the right, unselect the box 
that says Pearson, and tick the box that says Correlation matrix under Plots, as in Figure 
III.J.6.  
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Figure III.J.6. Screenshot of the correlation menu 

If you don’t see the labels of the x-axis or y-axis well, you can stretch the plot in the bottom 
right corner of the plot in JASP. Previous versions of JASP would just show the scatterplot, 
but in the 0.9.2.0 version, the plot will look like the plot in Figure III.J.7. If you want to copy 
only the scatterplot in for example a research report, you will need to crop the Figure 
yourself. This might be changed again in future versions of JASP. 

  

 

Figure III.J.7 Scatterplot visualizing the relationship between age (x-axis) and proficiency score (y-axis) 
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Figure III.J.7 suggests no problems with respect to homoscedasticity. Note that, for linear 
regression, the assumption of homoscedasticity applies to the residuals of your model (also 
see ‘How To Do a Regression Analysis). For correlations, in case of violations of 
homoscedasticity, it is often better to opt for a Spearman Rho (ρ) or Kendall's Tau (τ) 
instead of a Pearson (see Section 5.2.1 in Part I for an explanation of when to use which 
one. 

 

2.3  Linearity and multicollinearity 

For correlations and linear regression, linearity is another crucial assumption. Figure III.J.7 
clearly reveals a linear relationship between age and proficiency score. See section 4.6 and 
6.4 in Part I of the book for more information about linearity and multicollinearity. 

In the case of a relationship that is monotonic, but not linear, it would be better to perform a 
Spearman or Kendall instead of a Pearson correlation (see Section 4.6 and 5.2.1 in Part I). 

 

3. How To: Correlation Analysis 

Please note that there are some important assumptions and prerequisites for both the 
parametric Pearson’s r (parametric) as well as for the non-parametric Spearman Rho (ρ) and 
Kendall's Tau (τ) tests. These assumptions are explained in detail in Section 4.6 and 5.2.1 of 
Part I and a summary of which assumptions to check for correlation can be found in Table 
I.8.2. 

3.1.  Correlations: Checking assumptions and plotting the data 

For this example, we want to find out whether there is a relationship between two interval 
variables, age of acquisition and French proficiency scores, so we will aim for a Pearson r 
correlation (also see Section 5.2.1).  

In JASP, open your .csv file. To check for normality with this particular sample, we 
can follow the instructions in the ‘How to Check Assumptions’) for Skewness and Kurtosis 
and histograms. You can also go to T-tests > One Sample T-test, move both variables you 
want to check to the right, checking the box for Normality under Assumption Checks, and 
deselecting Student under Tests, as can also be seen in Figure III.J.8. Remember that Table 
II.J.2 in Practical 3 of the book provides a rough guideline on how to check for normality 
with different sample sizes. 
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Figure III.J.8. Screenshot of One Sample T-test used to check normality 

Table III.J.3 shows that the data are normally distributed, so we can proceed to carry out a 
Pearson r correlation. When the data are not normally distributed, you should opt for a non-
parametric alternative instead (see Section 5.2.1 in Part I for details). 

Table III.J.3 Screenshot of the output of the Normality test  

 

Next, we want to get to know the data further and this is best done by plotting them in a 
scatter plot. We do this by going to Regression > Correlation Matrix and ticking the box for 
Correlation Matrix under Plots. We want to make sure that the “independent” variable (in this 
case Starting Age is more of an independent variable) is on the x-axis, so we first add the 
“dependent” variable to the box on the right, followed by the “independent” variable. Figure 
III.J.9 shows us that the relationship is linear and homoscedastic (see Section 4.6 and 6.4 
for details on these assumptions).  
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Figure III.J.9 Adapted scatterplot from JASP output (see How to Check Assumptions on why this plot has been 
adapted) 

3.2  Correlations: getting results 

To do a correlation analysis, again go to Regression > Correlation Matrix. When you are in 
the menu (see Figure III.J.10), move the variables you want to test to the right. Next, select 
which statistical test you want to carry out (Pearson, Spearman, or Kendall’s tau-b), select 
Confidence Intervals, and click OK. You can also select Display pairwise table, which will 
yield a table such as the example in Chapter 5 of Part I (see Table I.5.2). Selecting the 
option Flag significant correlations will add asterisks to denote the significance (* for <.05, 
** for < .01, and *** for <.001). 

 

 

Figure III.J.10. Screenshot of the Correlation Matrix menu in JASP 
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3.3  Correlations: interpreting the output 

In Table III.J.4, we can see that the significance value is p = 0.008, and that our correlation 
of -0.572 is a moderately strong, negative correlation.  

Table III.J.4. Output of the Correlation analysis in JASP. 

 

For details on how to interpret this output, please see Section 5.2.1 in Part I and Practical 
4A-7 in Part II. 

3.4  Correlations: reporting results 

You can use the template explained in detail in Practical 4A (assignment 8) and report the 
results as follows: 

A Pearson correlation analysis showed that the age at which one starts learning a foreign 
language and proficiency were significantly negatively related (r (18) = -0.572, p = 0.008, 
95% CI [-0.17, -0.81]). This strong relationship suggests that the later one starts learning a 
foreign language, the lower their proficiency level will be, as can also be seen in Figure 
III.J.9. 

 

3.5  Correlations: additional useful information to check 

The effect size is quite large in this study, which could potentially mean that this is a 
meaningful effect in terms of power, but we know that we don't have 28 participants. As 
explained in Practical 5A (assignment 10), we could run a power test using one of the 
options mentioned there.  
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4. How To: Chi-square Analysis 

Chi-square is a non-parametric test for frequency analysis and is used to assess whether 
there is an association between two nominal/categorical variables. Before you can run a Chi-
Square test, remember that you should check the three assumptions that have to be met 
(see Section 5.2.3 and Practical 4B, assignment 5, for details). 

 
4.1  The Chi-square test: entering the data 

Suppose we investigated the colour preference of men and women using a questionnaire 
that only allowed the participants to choose between red, yellow and blue. The contingency 
table may look something like Table III.J.5. 

Table III.J.5. Contingency table with the total counts of the colour preferences of female and male participants. 

Colour Femal
e 

Male 

Blue 29 42 

Red 28 24 

Yellow 23 23 

 

Having the data in this format, the data in JASP would be organized as in Figure III.J.11. 
There is also an option to run a Chi-Square analysis on the raw data. Please see Practical 4B, 
assignment 4, for an explanation of the two formats. 

 

Figure III.J.11. Screenshot of how the data should be organized if you only know the total frequencies for each 
cell 

4.2  The Chi-Square test: choosing the variables in the menu 

Once you have the data open in the format of one of both options, go to Frequencies > 
Contingency Tables. For the raw data, you would only put a variable in Rows, and a variable 
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in Columns. For the data organized by the total counts, you would add the Frequency 
column in the box for Counts. This is also illustrated in Figure III.J.12. 

 
Figure III.J.12. Screenshot of the menu in Option 2 

4.3  The chi-square test: checking the assumptions 

As explained in Practical 4B (assignment 5), we must check if the assumptions for the chi-
square analysis have been met, before we look at the Chi-Square analysis itself. We can do 
this in the same Menu by clicking on Cells and checking the box for Expected under Counts. 
Under Statistics, you want to deselect the 𝜒𝜒2 (Chi-Square) symbol, since we are not 
interested in that yet. This is illustrated in Figure III.J.13. Now click OK. 
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Figure III.J.13. Screenshot of the menu when checking for the expected values 

Next, we will look at the output and check whether the conditions have been met 
(screenshot of the table in Table III.J.6). 

Table III.J.6 Screenshot of the output table with the Expected counts. 

 

In our case, all of the Expected values are above 5, so there is no reason to worry and we 
can continue to the next step, which is looking at the Chi-Square outcome. Please see 
Practical 4  



 

 

   15 

 

 

 

4.4  The chi-square test: getting results 

To run the Chi-Square analysis again go to Frequencies > Contingency Tables. Enter the 
variables again, as we did in Figure III.J.12. Click on Statistics, and tick the box of the 
statistical test, in this case, you want the 𝜒𝜒2 which is already selected by default. You also 
want to select Phi and Cramer’s V..  

Click on Cells and check Row, Column, and Total under Percentages. Now click OK. 

4.5  The Chi-square test: interpreting the output 

The first table in the output (see Table III.J.7) gives us the descriptives we asked for. 

Table III.J.7. Screenshot of the Contingency table  

 

In the next table, which can be seen in Table III.J.8, we find that the χ2-value is 2.215 and 
the chance of incorrectly rejecting H0 is 0.33. Note that the degrees of freedom (df in Table 
III.J.9) in a Chi-Square analysis is not related to the number of participants, but to the 
number of cells. 

Table III.J.8. Screenshot of the output of the Chi-Square test.  
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Clearly, the effect in the current study did not reach significance. If the result had been 
significant, we would probably want to look at the table with the values for Phi and the 
Cramer’s V we asked for (shown in the third table, also in Table III.J.9). Cramer’s V, which 
can be found in the bottom line of Table III.J.9, confirms that we are dealing with a very 
small effect (for details on effect sizes for Chi-square and how to interpret them, see Section 
5.2.3 and Practical 4B, assignment 7.  

Table III.J.9. Screenshot of the table with effect sizes. 

 

4.6  The Chi-square test: reporting on the results 

Conventionally, the results of the Chi-square should be reported as follows:  

A Chi-square analysis revealed that the association between gender and colour preference 
was not significant χ2 (2, N=169) = 2.22, p = 0.33.  

In the case of significant results, do not forget to also explicitly report on the direction of the 
association (e.g.  men having a stronger preference for Blue), and add the effect size (see 
Practical 4B, assignment 9, for more details on how to report on the results).  

When describing your results in a research report, always also include the contingency table 
(with observed values). The example table in Table III.J.10 has been copied from JASP 
without the Percentages (clicking again on Frequencies > Contingency Tables and 
unchecking the Percentages). After it was copied into Word, the whole table was selected, 
the font was changed and by right-clicking and selecting Autofit > Fit to Window, the table 
was enlarged a bit. You can also remove the decimals since we are dealing with absolute 
numbers.   

Table III.J.10. Contingency table showing the total counts of the Colour preferences of Male and Female 
participants. 

Contingency Tables  
 Gender   

ColourPref  Female  Male  Total  
Blue   29  42  71  
Red   28  24  52  
Yellow   23  23  46  
Total   80  89  169  
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Another valuable addition to the report is a barplot. This is not possible in the current version 
of JASP, but may be added in the future. Until then, the only way to visualize the data is to 
make histograms. For more information see Practical 4B-8. 
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5.  How To: t-test 

As with all parametric tests, please bear in mind the important assumptions and 
prerequisites for the t-test before conducting the actual test (also see Sections 4.6 and 5.3). 
As mentioned in Section 5.2.3, there are several versions of the t-test available, all with their 
own set of assumptions. As an example, we will be demonstrating the independent samples 
t-test here.  

5.1  The Independent Samples t-test: preparing for the t-test 

For the present purposes, we will use a dataset comparing test scores of boys and girls. It is 
good practice to always start with an inspection of the data by looking at some descriptive 
statistics for both groups. These descriptive statistics can be calculated in the Descriptive 
Statistics menu under Descriptives (see Practical 2A and Practical 3A, assignment 2a, for 
details). Table III.J.11 shows the results for the data set used here.  

Table III.J.11 Descriptive Statistics of the t-test dataset of boys and girls 

 

The output already shows that the girls seem to score higher on average (M= 
37.9;SD=3.18) than the boys (M= 32.1;SD=4.55). A simple boxplot, such as the one in 
Figure III.J.14 will also give a lot of information about the spread of the scores in both 
groups, as was also discussed in How To Do Descriptives.  

 

Figure III.J.14 Boxplot of the two groups and their test scores. 
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5.1.1  Checking normality 

To check for normality. we will here look at the z-scores of skewness and kurtosis, and by 
checking the Shapiro-Wilk test of normality in the menu of the Independent Samples t-test. 
Please note that this is not always the best option for a normality check: Table II.J.2 in 
Practical 3 of the book provides a guideline on how to check for normality in different 
circumstances.  

The Shapiro-Wilk tests in Table III.J.12 show that the difference between our sample’s 
distributions and the normal distribution is not significant. 

Table III.J.12 Outcomes of Normality test  

 

In addition, the z-scores for Skewness and Kurtosis are within the required range. These are 
calculated by taking the values of skewness and dividing these by their standard error. If we 
take the skewness value of the boys from Table III.J.13, which is 0.2292, and we divide it by 
its standard error, 0.5121, we get a value of 0.45, which is well within the range (see Table 
II.J.2 in the book for details on this interpretation). 

Table III.J.13 Values of skewness and kurtosis and their standard errors.  

 

 

5.1.2  Checking Homogeneity of Variance 

We will check homogeneity of variance (also see Section 4.6 in Part I) using Levene’s Test in 
the menu of the Independent Samples t-test and was also explained in the How to Check 
Assumptions Chapter.  

The significance value for the test of homogeneity of variance in our example is p = 0.09 
(see Table III.J.14), so we can assume equal variances in this case. 
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Table III.J.14 Values of skewness and kurtosis and their standard errors. 

 

5.2  The Independent Samples t-test: performing the t-test 

In the JASP menu, select the Independent Samples T-Test under T-Tests. In the menu that 
pops up (see Figure III.J.15), move the dependent variable and the independent variable 
you want to test to the boxes on the right. You want to select Student under TestsAlso select 
Location parameter together with the Confidence Interval below it. Finally, under Additional 
Statistics, you want to select the Effect size, Descriptives and also Descriptives Plots. 

 

 

 

Figure III.J.15. Screenshot of the Independent Samples t-test menu 
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5.3  The independent-samples t-test: interpreting the output 

The output in Table III.J.15 Shows that the girls scored higher than the boys and now also 
reveals that this difference is significant. For a detailed explanation on how to interpret the 
output of a t-test, please see Practical 4C, assignment 9. 

As explained in detail in Chapter 4 of Part I of the book, we also want to know the size of the 
effect. The one that is calculated here is Cohen’s d, but you can also choose to calculate r2 
(see Practical 4C, assignment 11 and 12, for details on both these effect sizes and how to 
calculate them)..  

The effect size in Table III.J.15 is large (see Table I.5.10 for details on how to interpret 
these effect sizes) and this information, either with the value of r2 or the value of d, should 
be added to the report.  

Table III.J.15  Independent samples test outcome 

 

5.4  The independent-samples t-test: reporting on results 

On average, the girls scored higher (M = 37.9, SE = 0.71) than the boys (M = 32.1, SE = 
1.02) on an intelligence test. This difference was significant (t(38) = –4.67; p < .001), 95% 
CI [-8.3, -3.2] and is also visible in Figure III.J.14 . The effect size was large: d = -1.48.  

The plot is referring to the box plot that was shown earlier. Alternatively, you may also copy 
the plot that is generated by the Independent Samples t-test menu, as the one in Figure 
III.J.16.  

 

Figure III.J.16 Descriptives plot of the different groups. The error bars indicate the 95% CI 
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6.  How To: Simple Regression Analysis 

Regression is a statistical model used for assessing relationships. More specifically, it helps to 
predict to which extent one or more independent variables contribute to the value of a 
dependent variable. Regression has its own particular list of assumptions that has been dealt 
with in detail in section 6.4 of Part I 

 
As the assumptions mostly apply to the residuals of the model, they are generally checked 
after fitting the model.  

6.1  Simple Regression: opening and inspecting the data 
Imagine a researcher is interested in the impact of age on the results of a simple lexical 
decision task. To explore the data and the potential relationship between the variables, it 
would be helpful to create a scatterplot. We get this by going to Regression > Correlation 
Matrix. Because we want the Reaction Times on the y-axis, and the Age on the x-axis, we 
put RT first and then Age. The scatter plot can be seen in Figure III.J.17. 

 

 

Figure III.J.17 Scatter plot showing the relationship between Age (x-axis) and RT (y-axis) 

The pattern in Figure III.J.17 reveals that there seems to be a linear positive relationship 
between age and RT in the lexical decision task. 

6.2  Simple Regression: fitting the model and interpreting the 
output 

A simple regression model can be built by going to Regression > Linear Regression, putting 
RT in the Dependent Variable box and Age in the Covariates box. 

As explained in Chapter 6 of Part I and in Practical 5B, assignment 6, there are different 
tables in the output giving different information. These can be seen in Table III.J.16. The 
output reveals that there is a significant effect of age: for every year added to age, the RT 
slows down with 9.6 ms. 

The R-squared reveals that about 50% of the variance can be explained by our model, which 
is quite good. The second table gives the outcome of an ANOVA.  
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For more details on how to interpret the output, including all other values, please see 
Section 6.2 and, in particular, the explanation of Table I.6.4 in Part I of the book. 

Table III.J.16 Three output Tables of Simple Regression. 

 

 
6.3  Simple Regression: checking assumptions 

6.3.1  Linearity and Homoscedasticity 

The best way to check linearity and homoscedasticity is by creating a residuals plot. This can 
be found in the Linear Regression menu under Plots. To get the plot that you want tick the 
one that says Residuals vs. predicted, as can be seen in the screenshot in Figure III.J.18. 

 

Figure III.J.18 Plots options in the Linear Regression menu 

Figure III.J.19 confirms that the relationship between age and RT is linear (as could also be 
seen in Figure III.J.17) and the residuals do not reveal any signs of heteroscedasticity (see 
section 6.2 and Practical 5B, assignment 9b, for an explanation on how to interpret residual 
plots). 
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Figure III.J.19 Residual plot showing the residuals and their deviations from the predicted values. 

 

6.3.2  Normality of the Residuals 

To assess whether the model’s residuals are approximately normally distributed, one can 
choose to create a histogram or a quantile-quantile plot (Q-Q plot) of the residuals. Both of 
these options can also be found under Plots, as can be seen in Figure III.J.18. The residuals 
histogram for the current dataset can be seen in Figure III.J.20, showing a distribution that 
is quite similar to a normal distribution. 

 

Figure III.J.20 A histogram of the residuals showing a normal distribution 

The Q-Q plot in Figure III.J.21 indicates that the residuals approximate the normal 
distribution (see Practical 5B, assignment 9c, for an explanation on how to interpret Q-Q 
plots).  
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Figure III.J.21 Q-Q plot of the residuals of our model 

6.4  Simple Regression: reporting the results 
We suggest to report the standardized (or beta) coefficients and all associated values in the 
output of the third table in Table III.J.16, but include information on the model, such as the 
R2

, in your report (see Practical 5B, assignment 10, for details). You can use the following 
and Table III.J.17 as an example for your report. Alternatively you can copy the third table 
from the output and paste it in your report, and adapt it accordingly (Table III.J.17): 

“We constructed a linear model of reaction time as a function of age. This model was 
significant (F(1,80)=78.57, p<.001) and explained 49.6% of the variance in the data (R-
squared). Regression coefficients are shown in Table III.J.17. The positive coefficient for age 
reveals that, as age increases the reaction times also increase significantly. To be precise, for 
every added year in age, the RT increases with 9.65 milliseconds. 

Table III.J.17: Regression coefficients for the linear model of reaction times as a function of age. 

 Estimat
e (B) 

Standard 
Error 

Standardized 
beta (β) 

t p 

(Intercep
t) 

 383.12
9 

 57.686   6.64
2 

 < 
.001 

 

Age  9.649  1.089  0.704 8.86
4 

 < 
.001 

 

  
 

To support your conclusion, it is common practice to also add a (reference to a) Figure 
visualizing the effect found, for example the scatter plot from Figure III.J.17. 
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7.  How To: Multiple Regression Analysis 

In Part I, Section 6.3, we already discussed multiple regression with continuous variables in 
regression. Multiple linear regression can be used with several continuous, but also with  
categorical predictors. However, in JASP, there is no possibility to carry out a multiple linear 
regression with categorical independent variables, but only with continuous variables. To 
avoid unnecessary complications, we will use the same dataset as we used in ‘How To Do a 
Simple Regression Analysis’ with the only difference of an added interval/continuous 
independent variable. To understand this How To, we suggest you first read Chapter 6 in 
Part I and make sure you understand ‘How to Do a Simple Regression Analysis”. 

 
7.1  Multiple Regression: opening and inspecting the data 

One extra variable has been added to the data we used for the simple regression in “How to 
Do a Simple Regression Analysis”: Caffeine. Here this refers to the number of mg caffeine 
per kg body weight that a participant has taken.  

 When we open the data in JASP, we first have a look at the data by plotting the data 
in scatterplots. We go to Regression > Scatter plots and we select the dependent variable 
first, and then add the independent variables. Under plots we tick the box for Correlation 
matrix. We can also tick Statistics under the Correlation Matrix function to get both the 
correlation coefficients and the scatter plots. The result can be seen in Figure III.J.22 
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Figure III.J.22 The scatter plots of the combinations of all three variables. 

 

The patterns in Figure III.J.22 reveal that there is a strong positive relationship between the 
Reaction Times (RT) in ms and the Age of the participants, as we saw in the simple 
regression described in “How To Do A Simple Regression Analysis”. There is also a strong 
negative relationship of RT and the Caffeine intake. Importantly, there does not seem to be 
a relationship between the two independent variables (Age and Caffeine). We will come back 
to this later point when we discuss collinearity. 

7.2  Multiple Regression: Fitting the model and interpreting the 
output 

The way that we build the multiple regression model is the same as with the simple 
regression. The only difference is that we add an extra covariate, as can be seen in Figure 
III.J.23. 
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Figure III.J.23. Screenshot of the menu for the multiple linear regression 

 

The outcome of the multiple regression analysis can be seen in Table III.J.18. As you can 
see, these tables are very similar to the ones in the simple regression (Table III.J.16). 
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Table III.J.18. Outcome tables of the Multiple regression analysis. 

 

There is a significant positive effect of age (p < .001: the older, the higher or slower the 
RT), and a significant negative effect of caffeine (p < .001: the more caffeine, the lower or 
faster the RT). The Adjusted R2 is 0.912, which means that 91.2% of the variance has been 
explained. This is a lot higher than in the simple regression analysis we did earlier. For more 
details on how to interpret the output of a multiple regression, see Chapter 6.3 in Part I.  

There is also an option to compare this model to the simple regression model we 
made with only Age as a predictor variable (or covariate). To do this, you go to Model and 
select the variable you want to include in the so-called null-model. Then you select the 
option R squared change under Statistics, as in Figure III.J.24. 
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Figure III.J.24. Screenshot of how to compare two different models 

In Table III.J.19 we can see the tables that are created after we select the null-model and 
the R squared Change. The Model Summary now shows a row for a Model 0 and one for a 
Model 1, the latter being the multiple regression model with our two predictor variables (age 
and caffeine). We can also see extra columns among which the R2 Change and the F Change. 
The values on the second line of these columns show us how much the multiple regression 
model improved as compared to the first model. We can conclude that there is a significant 
improvement, which implies that the second model (multiple regression) provides a more 
complete analysis. The second and third table show the information we also saw in Table 
III.J.16 and Table III.J.18. 

Table III.J.19. Comparing two Multiple Regression models. 
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7.3  Multiple Regression: Checking assumptions 

Except for multicollinearity, the assumptions and how to check them are identical to those of 
a simple regression, so we will go through these steps relatively quickly here. 
 We will first make a residuals plot to obtain Figure III.J.25. 
 

 

Figure III.J.25. Scatter plot showing the residuals and their deviations from the predicted values 
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Both the relationship between Age and RT and the relationship between Caffeine and RT are 
linear (see also Figure III.J.22), and the residuals plot in Figure III.J.25 does not reveal any 
strong signs of heteroscedasticity.  
 The histogram of the residuals in Figure III.J.26 and the Q-Q plot in Figure III.J.27 
indicate that the data follow a straight line, so it approximates the normal distribution. 
 

 

Figure III.J.26. Histogram of the residuals 

 

 

Figure III.J.27. Q-Q plot of the residuals 

The last thing we need to check is multicollinearity (see Section 6.4 in the book for an 
explanation). We already saw that there was no correlation between Age and Caffeine (see 
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Figure III.J.22). In addition to running a correlation, we can also check the so-called 
Variance Inflation (VIF) Errors by clicking on Collinearity diagnostics in the Statistics, giving 
us extra information in the Coefficient Table as depicted in Table III.J.20. The VIF values are 
below 5, so we can assume that there are no collinearity issues in this particular data set. 

Table III.J.20. Coefficients Table with the Collinearity Statistics 

 

7.4  Multiple Regression: reporting the results 

We will show a sample report for the multiple regression model that you can use as a basis 
for your reports. All values in the report below can be found in the output in Table III.J.18. 

We constructed a linear model of reaction time as a function of age and caffeine intake. This 
model was significant (F(2,79)=421.9, p<.001) and explained 91% of the variance in the 
data (adjusted R-squared). Regression coefficients are shown in Table III.J.21. The positive 
coefficient for age reveals that, as age increases the reaction times also increase 
significantly. This pattern can also be seen in Figure III.J.22. The negative coefficient for 
caffeine intake indicates a faster reaction time with more caffeine intake. 

Table III.J.21: Regression coefficients for the linear model of reaction times as a function of age and caffeine 
intake. 

 
Estimate (Unstandardized 
Beta) SE 

Standardized 
Beta (β) 

t-
value 

p-
value 

Interce
pt 

749.827 30.32
8 

 24.72 < .001 

Age 8.336 0.456 0.608 18.27 < .001 
Caffeine -37.159 1.890 -0.654 -19.66 < .001 
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8.  How To: One-Way ANOVA 

To show you how to perform a one-way ANOVA in R, we will be comparing three age groups 
and their proficiency score: younger (11-30 yrs), adult (31-50), and older (51-70) people. 
The important assumptions and prerequisites for the one-way ANOVA are explained Sections 
4.6 and 7.2 in part I of the book. 

 
8.1  One-way ANOVA: opening and inspecting the data 

The dataset we will be using has the values 1, 2, and 3 to represent the age groups. We will 
first change these into the labels for the age groups, as in Figure III.J.28. If you forgot how 
to do this, please check Practical 1 A, assignment 3. 

 

Figure III.J.28. Screenshot of changing the labels in JASP 

8.2  One-way ANOVA: obtaining descriptives and creating a boxplot 

Let us briefly look at some descriptives before continuing. We click on Descriptive Statistics 
under Descriptives, and we put Score in the Variables box and AgeGroup in the Split box 
(see ‘How to Do Descriptives’ for more information on how to do this). We then select 
Boxplots under Plots and the descriptives we want under Statistics, which gives us the 
descriptives table in Table III.J.22, and the Boxplot in Figure III.J.29. 
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Table III.J.22. Descriptives for the three age groups 

 

 

 

Figure III.J.29. Boxplot with the dispersion of scores for young, adult, and older people 

 
8.3  One-way ANOVA: checking assumptions 

As the group sizes are smaller than 25 (see Table II.J.2 in the book for details), we will focus 
on the outcomes of the z-scores of both skewness and kurtosis for normality in the 
Descriptive Statistics menu (see also How to Check Assumptions). The Skewness and 
Kurtosis values and their standard errors can be found in Table III.J.23. 
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Table III.J.23. Outcomes of Skewness and Kurtosis 

 

As we divide each Skewness value by approximately 0.5), this means we need to multiply 
the values by approximately 2. For Kurtosis, we divide the values of Kurtosis by 
approximately 1. We can conclude that the values of both Skewness and Kurtosis fall within 
the normal range (see Practical 3A, assignment 7c, for more information). 
  A Shapiro-Wilk test of Normality is not really possible to carry out in JASP with 
nominal variables with more than two levels. An ANOVA can handle slight deviations from 
normality quite well, especially if the design is balanced, so we can assume here that we can 
continue with the ANOVA. The ANOVA does also have an option to check the Q-Q plot of the 
residuals. See Practical 6B, assignment 9, for more information on checking the Q-Q plot and 
the non-parametric alternative. 

Before continuing with the ANOVA, we will check the homogeneity of variance 
assumption, which can be found by going to ANOVA > ANOVA, moving the dependent and 
independent variables to the respective boxes, and selecting the Homogeneity tests under 
Assumption Checks, as depicted in Figure III.J.30. 
 

 

Figure III.J.30. Screenshot of changing the labels in JASP 

The results of Levene’s Homogeneity test can be found in Table III.J.24. The outcome shows 
that we can continue with the parametric one-way ANOVA (see Practical 3A, assignment 6, 
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for details on how to interpret Levene’s output). See Practical 6B, assignment 10, for details 
on the non-parametric alternative in case of a violation of homogeneity. 

Table III.J.24. Outcome of Homogeneity test 

 

The output also gives us the Q-Q plot of the residuals of the ANOVA model. Figure III.J.31 
shows that the residuals look more or less normally distributed. See Practical 5B, assignment 
9c, and Practical 6B, assignment 9, for more information on Q-Q plots. 

 

 

Figure III.J.31. Q-Q plot of the residuals of the ANOVA model. 

 
8.4  One-way ANOVA: performing the test and interpreting the 
output 

After checking the assumptions, we can carry out the ANOVA. We are already in the ANOVA 
menu because we checked the homogeneity of variance there. The output should also 
already be there in the ANOVA table, but we also want to add the effect size, which can be 
selected under Additional Options. The most common effect size is the 𝜂𝜂2 (eta-squared), 
which we have selected here (For more information see Section 7.5 of part I and Practical 
6B-11). The output can be seen in Table III.J.25. 
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Table III.J.25. Output of a One-Way ANOVA 

 

In this case, the results show that there are significant differences between the three 
different groups (see Section 7.2 for details on how to interpret ANOVA output). The effect 
size is 0.34, which is a large effect. We know that with a power of 0.8, we only need about 
28 participants per group to get a large effect. However, the groups in this example only 
consist of 20 participants per group. We can therefore not conclude that we have sufficient 
power. We would need to check this in a program such as G*Power (Faul, Erdfelder, Lang, & 
Buchner, 2007) or an online Power calculator. 

Of course, we still need to conduct a post hoc test and we will opt for the Tukey test (see 
Section 7.2 in Part I for more details), which works best with equal sample sizes and with 
homogeneity of variance. We can select the test under Post Hoc Tests in the ANOVA menu, 
together with checking the box for Confidence intervals. We will then get the table in Table 
III.J.26. 

Table III.J.26. Output of the Post Hoc test 

 

The results indicate that the mean proficiency of the adult and young differs significantly (p 
= .026), that the old and young group differ significantly (p < .001), and also that the old 
and adult group differ significantly (p = .022). 
 Finally, you can also select a Descriptives plot with the 95% Confidence Intervals as 
error bars under Descriptives Plots in the ANOVA menu (see Figure III.J.32). 
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Figure III.J.32. Descriptives plot with error bars representing 95% Confidence Intervals 

 
8.5  One-way ANOVA: reporting the results 

You can use the sample format discussed in Practical 6B, assignment 13,  to report the 
results: 

There was a large significant effect of age group on proficiency scores, F (2, 57) = 14.63, p 
< 0.001, 𝜂𝜂2 = .34. A Tukey post hoc analysis revealed that the youngest group performed 
significantly better (M = 76.35, SD = 10.76) as compared to both the middle (M = 66.35, SD 
= 9.79), p = 0.03, 95% CI [0.9, 19] and the oldest group (M = 56.1, SD = 14.45), p < 
0.001, 95% CI [11.2, 29.3]. The middle group also did significantly better than the oldest 
group at p = 0.02, 95% CI [1.2, 19.3]. This effect is also illustrated in Figure III.J.31. 
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9. How To: Factorial ANOVA 

This How To will show an example of a factorial ANOVA with two independent nominal 
variables, so the test we will perform is a two-way ANOVA. The assumptions are the same as 
those for the one-way ANOVA, but note that (as also discussed in Practical 6C, assignment 
6) you should check the distribution in each group or combination of groups.  

As there is a lot of overlap between a one-way and a factorial ANOVA, it is advisable to read 
Chapter 7 of Part I first and go through the ‘How To Do a One-Way ANOVA’ first. 

9.1  Two-way ANOVA: opening and inspecting the data 

We will use example data from practical 7(f), where the question was whether 
encouragement (yes or no) and/or gender (boy or girl) impacted the number of marbles 
(interval variable) toddlers put in a vase. Remember that we are not only testing a pair 
of hypotheses for every IV, but also for their combined effect (also see Practical 6C, 
assignment 3)!  

The data file we will be using has the format as in Figure III.J.33. 

 

Figure III.J.33. Data set with two independent variables 

9.2  Two-way ANOVA: obtaining descriptives and checking 
assumptions 

To plot the data, you can opt for a simple boxplot (see ‘How To do Descriptives’) to plot the 
difference between the boys and girls, and another boxplot to plot the difference between 
the encouraged and the not-encouraged groups. See Practical 6C, assignment 5a, for how to 
create a new column for the combined independent variables, yielding the descriptives in 
Table III.J.27 and the boxplot in Figure III.J.34. 

 

 

 



 

 

   41 

 

 

 

Table III.J.27 Descriptive statistics of the 4 different groups. 

 

 

 
Figure III.J.34. Boxpot showing the number of marbles in the group of boys that was encouraged (enc_b), the 
group of girls that was encouraged (enc_g), the group of boys that did not receive any encouragement (noenc_b) 
and the group of girls that was not encouraged (noenc_g) 

 

We will use the same column as we used for the descriptives to check normality for each 
combination of groups. Table III.J.28 shows the outcomes of skewness and kurtosis and the 
SEs associated with these values.  
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Table III.J.28. The values associated with skewness and kurtosis for each combination of groups 

 

The z-scores of these values have been calculated in Table III.J.29. 

Table III.J.29. Z-scores of the skewness and kurtosis for each combination of groups 

 boys 
encouraged 

girls encouraged boys not 
encouraged 

girls not 
encouraged 

z-score 
skewness 

0.64 -0.30 -0.34 -0.82 

z-score kurtosis -0.79 -0.61 0.01 -0.01 

 

All z-score values are well within the normal range. We can therefore assume that the data 
of all subgroups are approximately normally distributed. 

We will also have to check homogeneity of variance for the combination of all subgroups in 
the ANOVA menu (see How to Do a One-Way ANOVA for more information about this). 

Table III.J.30. Outcome of the Levene’s Test. 

 

Table III.J.30 shows that Levene’s test is non-significant, suggesting that we can assume 
equality of variance. 
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9.3  Two-way ANOVA: performing the test and interpreting the 
output 

Adding both independent variables to the Fixed Factors box in the ANOVA menu, and the 
dependent variable NrMarbles in the Dependent Variable box, gives us the outcome table of 
the Two-Way ANOVA. As explained in Practical 6C, assignment 7, JASP does calculate the 
partial η2,but not the partial version of the ω2. We will select both the partial η2  and the ω2 
under Additional Options. The ANOVA table can be seen in Table III.J.31. 

Table III.J.31. Output of the Factorial ANOVA 

 

 

As explained in detail in Practical 6C, assignment 6, when interested in a possible interaction, 
you need to perform a type III ANOVA, which is the default in JASP. Table III.J.31 shows 
that there is a significant main effect of Group (p =.022). There is, however, no main effect 
of Gender (p = .39) nor is there an interaction (Group*Gender, p= .33) between the two 
variables. 
 
As for the effect size, we’ve selected both the partial version of the 𝜂𝜂2and the omega-
squared (𝜔𝜔2). We will report the partial  𝜂𝜂2 as it partials out other effects and is hence the 
one you need when you have multiple independent variables.  
 

We are dealing with a medium effect of Group here. Since there was no effect of Gender nor 
an interaction of Gender and Group, we do not need to look at the effect size for these 
results (for details on how to interpret (partial) eta-squared, see Practical 6C, assignment 7). 

You can also select a plot under Descriptive Plots, as in the menu in Figure III.J.35.  
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Figure III.J.35. Screenshot of the Descriptive Plots option in the ANOVA menu 

 

You can decide to make a figure for only the main effect Group, or select both independent 
variables, as we have done here. This choice results in the plot that you can see in Figure 
III.J.36. 

 

Figure III.J.36. Descriptive plot showing the main effect of group and the absence of an effect for Gender and 
an interaction of the two variables. Error bars represent the 95% Confidence Intervals. 

9.4  Two-way ANOVA: reporting the results 

We could use the following text to report on the results: 

There was a significant main effect of encouragement on the number of marbles children put 
into the box, F(1,52) = 5.53, p = 0.022 (also see Table III.J.27 and Figure III.J.34). On 
average, the toddlers who were not encouraged scored higher (M = 5.89; SD = 2.409) than 
the toddlers who received encouragement (M =4.25; SD =2.633). This effect was of a 
medium size, η²p = 0.096. There was no significant difference between the boys and girls (p 
= 0.39) nor was there an interaction between gender and encouragement (p=0.33). 
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