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Taking account of randomness

Objectives

▪▪ To understand the reasons for using simulation in solving stochastic models

▪▪ To demonstrate the technique of simulation for simple problems using the tabular 
method

▪▪ To develop simple models of financial systems in Excel

Introduction
The quantitative techniques that you have met so far have allowed analytical solutions 
to problems to be found. For example, the inventory control (EOQ) model is a simple 
formula that will enable you to calculate the order quantity that will minimize inventory 
costs (see Chapter 16). These techniques or models are called ‘deterministic’ because it 
is assumed that the variables are known precisely. However, there is another model class 
called ‘stochastic’. A stochastic model has at least one variable that does not have a single 
value – it has many possible values defined by some probability distribution. A queuing 
system is an example of a stochastic model and even relatively simple queuing models are 
difficult to solve analytically. Queuing models require special software to develop and run 
them. However one type of stochastic system can be solved using a spreadsheet. These 
are systems where time is not such an important element. We usually refer to this type of 
simulation as Monte Carlo simulation. This chapter looks at the use of simulation to solve 
both types of simulation.
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Merrill Lynch and the credit crisis of 2008

On 15 September 2008 the Bank of America 
Corporation announced that it had agreed to acquire 
Merrill Lynch in a $50 billon all-stock transaction. At 
the time many American financial institutions were in 
trouble and both Fannie Mae and Freddie Mac were 
effectively nationalized. AIG and Morgan Stanley 
were also lent money while Lehman Brothers went 
into liquidation.

Merrill Lynch was a large financial institution 
and had a multibillion dollar portfolio of loans and 
investments with over 100 institutions. The case 
described below shows how Merrill Lynch used 
liquidity risk models to simulate the effects of different 
scenarios including those experienced in 2008.

Merrill Lynch in common with other investment 
companies provided short term loans to companies. 
This is called revolving credit lines. These loans 
are effectively provided by individual clients with 
investment accounts at Merrill Lynch. A company 
seeking a credit line normally only does so as a 
backup in case other forms of (cheaper) funding 
aren’t available due to adverse market conditions for 
example. At any one time a company may have a 
number of credit lines that mature at different times. 
They can repay any credit line before the end of 
the term but must repay it at the end of the period 
unless Merrill Lynch agrees to renew it. It will base 
its decision on whether to renew on the credit rating 
of the company, the history of the company’s use of 

the credit line and other external factors. In general 
terms greater use of its credit line by a company 
usually signals that the credit rating of the company 
is deteriorating.

Merrill Lynch developed a Monte Carlo simulation 
model that simulated the monthly credit line usage 
for each company over a 5 year time period. During 
this time period credit ratings of companies change, 
credit lines expire, some get renewed and some 
companies will repay credit lines early. All these 
events are stochastic which means that they vary in 
some random way. There is also likely to be some 
correlation between companies in the same sector 
and this was included in the model. Another part of 
the model used Markov processes that modelled 
the way that monthly credit ratings by companies 
change. Finally there was an expert system that 
provided rules for when a company would pay off 
a loan early or the bank would renew or terminate 
expiring lines of credit.

The output from over 5000 replications of the 
model gave liquidity requirements each month over 
the 5-year time period. By using simulation in this 
way Merrill Lynch were able to see the effect of 
different scenarios. As a result of this model they 
increased their portfolio by 60% to over $13 billion.

Source: T. Duffy et al., Interfaces, Sept/Oct 2005,  
Vol. 35, No. 5, 2005, pp. 353–69.

Quantitative methods in action



17  Taking account of randomness 3

Queuing problems
There are many instances of queueing situations. Whenever you go to the super-
market or the bank you will inevitably have to join a queue to be served. Why is 
this? The reason is that the arrival of customers to a service facility is unpredictable. 
Although you may know that 30 people an hour will arrive to be served, you cannot 
predict when they will arrive. You may get 10 people in the first 5 minutes, then no 
one for another 10 minutes. This is just like tossing a coin 10 times; although you 
may expect 5 heads and 5 tails, you wouldn’t be that surprised to get 7 heads or even 
10 heads. Just like tossing a coin, the average of 30 people an hour will be achieved 
over a long period of time, but in the short term unpredictable results can happen. 
This unpredictable behaviour means that it is very difficult to avoid queues. You 
could increase the capacity of the service facility but you would then find that this 
expensive resource is lying idle much of the time. The solution to queueing problems 
is therefore a compromise between having excessive queues and an underutilized 
resource.

Some simple queueing problems can be solved analytically, but the vast majority 
have to be solved using a technique called simulation. The following example illus-
trates a typical queueing problem.

Passengers arriving at a suburban rail ticket office during the morning peak commuter 
period frequently have to wait for service. There is one clerk who issues tickets and 
provides an information service for passengers. The manager has received complaints 
regarding the time passengers spend in the queue waiting to be served, and she wishes 
to investigate possible methods of reducing the queueing time. Possible ideas include 
employing a second ticket clerk who could either share the work of the existing clerk 
or perhaps handle enquiries only. Another idea may be to collect fares on the train. 
The manager decided to collect data on arrivals and service times over a number of 
days, and her figures are summarised in Tables 17.1 and 17.2.

Table 17.1  Arrival time distribution

Inter-arrival time (secs) Frequency (%)

0 to under 30 55

30 to under 60 30

60 to under 90 10

90 to under 120 5

Describe the components of the queueing system inherent in this example.

You probably realize that passengers must first arrive and then either join a queue or 
go straight to be served. Once served, passengers leave the ‘system’. This can be better 
described by the means of a diagram.

example 
17.1

activity 
17.1

Table 17.2  Service time distribution

Service time (secs) Frequency (%)

20 to under 30 17

30 to under 40 28

40 to under 50 25

50 to under 60 20

60 to under 90 10
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The manager has a few ideas for reducing the queues. Why shouldn’t she just try them 
out and see which is the best?

This method is probably done in many cases, but it can be costly and may disrupt the 
entire system if you are not careful. In some cases experimenting with the real system 
can be dangerous. For example, trying out changes to the safety devices of a nuclear 
power station is not recommended! Developing a model of a system and experiment-
ing on this is much cheaper, safer and less disruptive. Of course, the model needs to 
be accurate and much time is spent by analysts validating their model. A model can 
only be an approximation of the real system and the validation checks will tell you 
how close your model is to the real system. For instance, the model might not have 
allowed for the fact that passengers ‘balk’ from a queue; that is, do not wait to be 
served. If this is important it can be included and the model re-validated.

Random numbers
Although you may be sure that 30 customers turn up to be served every hour, you 
cannot be sure when during that hour they will arrive. You may get 10 people in the 
first minute and then no one may turn up for the next 15 minutes. In other words, 
there is a randomness in the way customers are likely to arrive. This randomness is 
apparent in most systems and is the reason why deterministic models are not very 
good at solving real problems. In order for simulation to take this randomness into 
account, random numbers are used.

True random numbers can only be generated by physical devices such as a roulette 
wheel which ensures that the distribution is uniform; that is, each number has an 
equal chance of being picked. In addition the sequence of numbers so produced 
is non-repeatable. However, most simulations are carried out on a computer and 
the random numbers in this case are generated by a formula within the computer. 
Although the random numbers produced are not true random numbers, they behave 
like true random numbers and are called pseudo random numbers. The random 
numbers included in the table in the Appendix were generated by a computer and are 
therefore pseudo random numbers.

The purpose of random numbers is to allow you (or the computer) to randomly 
select an arrival or service time from the appropriate distribution. The frequency 
tables given in the example represent the distribution of arrival time and service time 
for the ticket office. Random numbers can be arranged in any order, and for this case 
two-digit numbers would match the percentage format in the tables. If you look at 
this table you will see that 55% of inter-arrival times are in the range 0 to under 30 
seconds. The random numbers 00 to 54 (or 01 to 55) could therefore be used to repre-
sent this time band.

activity 
17.2

Figure 17.1  Ticket office system

arrivals queue service departures
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The next time band in Table 17.1 is 30 to under 60 seconds. What random numbers 
would you use to represent this band? Repeat this procedure for the last two bands.

Since the frequency is 30%, the random numbers should be 55 to 84 (or 56 to 85) 
inclusive. For the last two bands the random numbers should be 85 to 94 (86 to 95) 
and 95 to 99 (96 to 00) inclusive.

If a computer package were used to simulate this system, then a routine within the 
program would generate a random number and then obtain the appropriate inter-
arrival time by interpolation. For example, if the random number 15 was generated 

then the inter-arrival time would be 8.2 seconds a 
15
55

  of 30b . However, when manu-

ally carrying out a simulation it is much easier to represent each time band by its mid 
point, so any random number between 00 to 54 would correspond to an inter-arrival 
time of 15 seconds. This can be repeated for all bands, and to do this you may find it 
easier to write down the cumulative frequencies, as in Table 17.3.

Table 17.3  Allocation of random numbers

Inter-arrival time mid point Frequency (%) Cumulative frequency Random numbers

15 55 55 00–54

45 30 85 55–84

75 10 95 85–94

105 5 100 95–99

Apply this procedure to the service time distribution (Table 17.2).

Again, a particular service time would be represented by a range of random numbers. 
For example, a service time of 55 seconds would be represented by the random 
numbers 70 to 89.

Table 17.4  Solution to Activity 17.4

Service time mid point Frequency (%) Cumulative frequency Random numbers

25 17 17 00–16

35 28 45 17–44

45 25 70 45–69

55 20 90 70–89

75 10 100 90–99

Tabular simulation
The easiest method of demonstrating simulation is by manually simulating a simple 
system. In order to carry out the simulation of the ticket office manually you would 
need to obtain a stream of random numbers. These can conveniently be obtained 
from tables (see Appendix). These numbers would then be used to sample from the 
arrival and service time distributions. For example, suppose that the first few random 

activity 
17.3

activity 
17.4
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numbers are 08, 72, 87 and 46. The random number 08 represents an inter-arrival 
time of 15 seconds, so the first passenger arrives at a clock time 15. There is no queue, 
so this passenger can be served immediately. The random number 72 corresponds to 
a service time of 55 seconds, so this service will end at a clock time of 70 (15 + 55). 
The next customer arrives 75 seconds after the first, so the clock time of 90 is after 
the end of the last service. The second passenger can also be served immediately. The 
service time is 45 seconds, so the passenger departs at 135. This information is best 
displayed in tabular format similar to Table 17.5. The last column of this table allows 
the waiting time of each passenger to be recorded.

Table 17.5  Tabular format

Arrivals Service

RNo Inter-arr. Clock time RNo Time Starts Ends Waiting time

08 15 15 72 55 15   70 0

87 75 90 46 45 90 135 0

Continue the tabular simulation using the following random numbers:
15, 96, 04, 00, 52, 27, 46, 73, 95, 76, 10, 25, 02, 11

As you can see in Table 17.6, the calculations are not difficult, but they are tedious 
and time consuming.

Table 17.6  Simulation of the ticket office system

Arrivals Service

RNo Inter-arr. Clock time RNo Time Starts Ends Waiting time

08 15 15 72 55 15 70 0

87 75 90 46 45 90 135 0

15 15 105 96 75 135 210 30

04 15 120 00 25 210 235 90

52 15 135 27 35 235 270 100

46 15 150 73 55 270 325 120

95 105 255 76 55 325 380 70

10 15 270 25 35 380 415 110

02 15 285 11 25 415 440 130

What is the mean waiting time for the simulation above?

The mean waiting time of the first 9 passenger is 72.2 seconds, but it appears that the 
waiting time is increasing as the simulation proceeds.

Use of computer simulation software
It is not practical to simulate systems manually so computer software is used. At one 
time they were purpose-built using specialist programming languages, but these days 

activity 
17.5

activity 
17.6
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most simulation packages consist of a graphical user interface (GUI) which allows 
you to model parts of the system using graphics, a random number generator which 
generates random numbers to be used to sample from probability distributions, house-
keeping routines that stores information on the life cycle of elements of the system and 
an output generator that produces statistical and other outputs. A popular package is 
called Simul8 and this package allows users (even those with little knowledge of simu-
lation) to build quite complex systems easily. The model shown in Figure 17.1 was built 
using Simul8 (and took only a couple of minutes!). This model was simulated for 8 
hours and the output obtained is shown in Figure 17.2. Notice that the average queuing 
time is 81.7 seconds which is not that different from the 72.7 seconds found manually.

Figure 17.2  The ticket office simulation using Simul8

Monte Carlo simulation
For queuing type systems it is necessary to use specialist simulation software but 
some systems can be simulated using a spreadsheet. These are systems where time 
does not have to be modelled in such a precise way and to not involve queuing 
processes. This type of simulation is often called Monte Carlo simulation to differen-
tiate it from the queuing simulation that we have already met. An example of a system 
that can be simulated using a spreadsheet is a financial system. Cash flows generated 
by an investment are likely to be uncertain, particularly when these cash flows occur 
at some time in the future. The uncertainty in a future cash flow can be represented 
by a probability distribution and, as in queuing simulation, we can sample from this 
distribution using random numbers. There is a random number function within 
Excel, and together with other in built functions it is easy to build a simple simulation 
model. Example 17.2 illustrates a simplified financial system.

BFC Bank takes in deposits which it uses to make loans to businesses. The pattern of 
monthly deposits follows a normal distribution with a mean of £20m and a standard 
deviation of £6.8m. The distribution of monthly loans is again normal with a mean 
of £8m and a standard deviation of £1.2m. Each month 5% of outstanding loans are 
repaid and 7% of deposits mature and have to be repaid. It pays 0.5% per month inter-
est on deposits and charges 1% per month on loans. BFC Bank attempts to ensure the 
total loans do not exceed 50% of total capital from deposits. The problem is that, apart 

example 
17.2
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from the random nature of deposits and loans, there is also a danger that a company 
will be in default of its loan and in this case the loan is written off. The probability that 
a company will default on its loan is currently 2% but when this occurs the average 
amount in default is £20m. This is taken off the available capital at the end of the month.

An Excel model of the process described in Example 17.2 should generate depos-
its and loans randomly. The Excel function =Rand() generates a random number 
between 0 and 1. However the problem with using this function is that every time 
Excel does another calculation a new random number will be generated. It is possible 
to turn off automatic calculation under Calculation Options in the Formulas tab. 
You then must remember to do the calculation manually when required. However 
a better method is to generate a large quantity of random numbers in a separate 
sheet using Rand() and then copy and Paste Special/Values only back into 
this sheet or to another sheet. Figure 17.3 illustrates this method. Each column of 
random numbers will represent a stream of random numbers and you can use values 
from these streams in the simulation model. The advantage of this method is that you 
can use the same random number streams when trying out different scenarios (for 
example, different probability of loan defaults). You are then able to make a direct 
comparison between scenarios and not have to worry about the effect that different 
random numbers have had on the results.

Figure 17.3  Generation of random numbers

Check Values

From Example 17.2 we know that deposits and loans are governed by the normal 
distribution. To generate a value from the normal distribution in Excel you use the 
function Norminv. This function is illustrated in Figure 17.4 where a sample deposit 
is generated. A sample loan can also be generated in the same way.

A random number is also used for the loan default. If this random number is less 
than or equal to 2% a £20m default is generated. The Excel command for this situation 
is =IF(’Random numbers’!C1>.02,0,20). This uses a random number from  
stream C1 and if this value is greater than 0.02 then the loan default is zero but if not 
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the loan default is 20. On average there should be two occasions in 100 months when 
a company defaults.

When developing any Excel model it is often useful to have an input section where 
parameter values are set. The Excel functions then use these cells as absolute refer-
ences instead of actual values. The Excel sheet showing the basic Excel inputs and 
column headings is given in Figure 17.5.

A random number goes here

The result is a deposit of £18.9m

Figure 17.4  Generating a value from the normal distribution

Figure 17.5  The Excel inputs and column headings

What formulae are required for:
1.	 Deposits held at start of month?
2.	 Interest paid on deposits?
3.	 Total loans outstanding at start of month?
4.	 Deposits maturing at end of month?
5.	 Loans repaid?
6.	 Capital available at end of month?
7.	 Total on loan at end of month?
8.	 Ratio of loans to capital?

activity 
17.7
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The answers to Activity 17.7 are given in Table 17.7.

Table 17.7  Answers to Activity 17.7

Formula Explanation Example

1 deposit held at the end of the previous 
month plus the new deposits this month

=K13+B14

2 0.5% * total deposits held =$E$4*C14
3 loans outstanding from the previous 

month plus new loans this month
=L13+E14

4 7% * total deposits =C14*$I$4
5 5% * total loans outstanding =$E$6*F14
6 total capital at start of month + interest 

on loans – interest paid on deposits + 
loans repaid this month – loans default –  
loans made this month – deposits 
maturing this month

=C14+G14-D14+I14-J14-E14-H14

7 total loans at start of month – loans 
repaid this month

=F14-I14

8 Total on loan/total capital =L14/K14

Figure 17.6  Twelve months’ simulation of BFC Bank

To run this simulation you need to copy the formulae down the number of rows 
corresponding to the number of months you wish to run the simulation for. So if you 
want to run the simulation for 12 months copy the formulae down from cells 14 to 
25. However before you do this you need to start the simulation with a fixed amount 
of deposits and loans. In the spreadsheet shown in Figure 17.6 values of £200m and 
£100m were used. You can download this spreadsheet from the website but if you 
have developed your own spreadsheet your answers will be different to the ones 
shown in Figure 17.6 as the random numbers will be different.

Summarize the results from the simulation shown in Figure 17.6

The deposits varied from £13.5m to £26.4m while the loans varied from £6.3m to 
£9.8m. The capital available from deposits has increased by £7.4m during the month 

activity 
17.8
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while loans have increased by £27.7m. Although the ratio of loans to capital started 
off at 50% the loan default that occurred in month 2 has helped this ratio rise to 57%. 
This ratio has stayed above 50% for the rest of the 12 months.

Try repeating the simulation using differ.ent stream (columns) of random numbers. 
(You will need to edit the formulae in row 14 and then copy the formulae down to 
row 25.)

The simulation using this set of numbers is shown in Figure 17.7. From this you will 
see that the results are slightly different to the first run. In particular there was no 
default in the first 12 months so the ratio of loans to capital is lower than in the first 
run. However the ratio is still above 50% for the 12 months.

We normally have to make many different runs of a simulation as the results 
obtained are affected by the random numbers used. In fact we may need many 
hundreds if not thousands of runs to get a statistically valid result. This would be 
difficult to do manually and we can either set up a macro to do this automatically or 
use a spreadsheet add-on such as @Risk.

activity 
17.9

Figure 17.7  Simulation of BFC using a different stream of numbers

Uses of simulation
Both queuing and Monte Carlo simulation can be used to try out what-if experi-
ments. These are ideas you have for changing the real system. In Example 17.1 we 
discussed possible ideas for changing the way that the ticket office is run in order to 
reduce queuing time. In Example 17.2 we may want to see the effect on the ratio of 
loans to capital if the default rate changed. Or we might want to see the effect of a 
change in the monthly mean deposit or loan rate.

You have decided to halve the mean loan rate from £8m to £4m a month. What effect 
does this have on the ratio of loans to capital?

If you used the spreadsheet provided on the website you should have found that the 
ratio has been reduced and is consistently below 50% for the whole 12 months (see 

activity 
17.10
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Figure 17.8). If you had used your own spreadsheet you would have got a slightly 
different result for the reasons given after Activity 17.10.

Figure 17.8  Halving the mean loan rate

As you may be aware, developing and running simulations is not a straightforward 
affair. When using random numbers there will be many variations which need to 
be considered. This is particularly important when comparing what-if experiments. 
Many runs should be made and statistical analysis (for example, paired t-tests) used 
to arrive at sound conclusions. You also need to consider start-up conditions. We 
started the Monte Carlo simulation with £200m of capital and £100m of loans but 
what would have happened if we had used different amounts? In simulation termin
ology we talk about warm-up and steady state to remove these start-up conditions. 
For those of you interested in learning more about simulation see Robinson (2004).

After statistics, simulation is the next most common quantitative methods technique used in 
business and industry.

One of the reasons for this is that modern simulation software is cheap and very easy 
to use. However, its ease of use also makes simulation one of the techniques that is most 
easily misused. Part of the problem is that simulation is essentially a sampling device, and 
knowledge of statistics is required to fully interpret the output from a simulation model. In 
the wrong hands simulation can provide at best worthless results and at worst errors of 
modelling or of interpretation which may create misleading conculsions. Simulation can also 
be a very time consuming technique, not only in the model development stage, but also in 
the running of the model.

However simulation is a very powerful modelling tool and can save a company millions 
of pounds by enabling it to test ideas out on a model before trying them for real. There are 
some situations where testing cannot be done on the real system either because the system 
doesn’t yet exist or because it would be too dangerous to experiment on it. One example of 
this latter category is in the use of simulation in the transmission and control of MRSA.

Reflection
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In the Quantitative methods in action we looked at the use of simulation in the financial 
sector. Merrill Lynch used simulation to model worse case scenarios although even they 
probably didn’t foresee how bad the situation would get. Fortunately this company survived 
albeit by becoming part of a larger bank.

▪▪ Simulation is used to solve complex systems where it would be difficult to apply analytical 
techniques.

▪▪ Simulation takes into account the variability that occurs in everyday life.

▪▪ To produce statistical results, it is necessary to make several runs of a simulation model.

▪▪ Queuing simulation requires special software, but Monte Carlo simulation can be 
performed using a spreadsheet.

Robinson, S. (2004) Simulation: The Practice of Model Development and Use, Wiley.

Solutions to all questions are freely available   

 1	 Customers arrive at a single cash dispenser with the inter-arrival time distribution shown 
in Table 17.8.

The service time is 45 seconds.
Using the random numbers below, manually simulate the system and find the average 

time spent waiting for service and the utilisation of the cash dispenser.
05, 20, 30, 85, 22, 21, 04, 67, 00, 03

Table 17.8  Inter-arrival time distribution for Question 1

Inter-arrival time (secs) Frequency (%)

20 to under 50   5

50 to under 100 20

100 to under 150 30

150 to under 200 45

2	 Customers arrive at a bank, which has only a single cashier, with the inter-arrival time 
and service time distributions shown in Table 17.9.

Using the random numbers given below, simulate the next 6 arrivals and find the 
mean time that they spend queueing for the cashier.

04, 10, 59, 07, 38, 98, 01, 75, 48, 91, 04, 12

Table 17.9  Arrival and service time distributions for Question 2

Inter-arrival time (mins) % of customers Service time (mins) % of customers

0 to under 4 30 0 to under 1   0

4 to under 6 40 1 to under 3 50

6 to under 8 20 3 to under 5 40

8 to under 10 10 5 to under 7 10

3	 Ajax Food Products has its main factory in the centre of Bristol. Lorries arrive at a 
constant rate from 08.00 to 18.00 five days a week, where they are either loaded or 

Key points

Further  
reading

Practice 
questions

http://www.palgrave.com/oakshott-eqm6
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unloaded using the single loading/unloading bay and on a first-come, first-served basis. 
The area around the factory is frequently congested with lorries because the loading/
unloading depot is not large enough for all arriving lorries to wait. A suggestion has been 
made that an improvement in numbers queueing might result if priority was given to 
lorries that required unloading. This is because unloading is generally a faster operation. 
However, before any decision is made it has been decided to build a simulation model of 
the current system.
(a)	 Briefly discuss the advantages and disadvantages of simulation as a means of 

experimenting on this system.
(b)	 Using the random numbers 42, 17, 38 and 61, demonstrate how 4 unloading times 

could be generated from the frequency distribution given in Table 17.10.

Table 17.10  Unloading times for Question 3

Time (mins) Frequency (%)

0 to under 30 20

30 to under 40 35

40 to under 50 22

50 to under 60 15

60 to under 70   8

4	 Andrew Giles, the Transport Manager at Bristol Tyres, has just returned from a meeting 
with the Managing Director. Apparently the police have received complaints from local 
residents about the parking of heavy lorries in the side streets near the factory. This is 
occurring because there is insufficient room in the depot for lorries to wait to be loaded/
unloaded.

To reduce the congestion it has been suggested a second bay be built. However, 
before this is done a simulation of the current system is to be developed and you have 
been asked to take on this project.

Your first task was a data collection exercise, and this gave you the following 
information:
(i)	  The depot is open from 0800 to 1800, Mondays to Fridays.
(ii)	  Vehicles either require loading or unloading (not both).
(iii)	 70% of lorries require loading and 30% require unloading.
(iv)	 �The frequency distributions of the loading/unloading operations found by timing a 

large number of lorries were as shown in Table 17.11.

Table 17.11  Frequency distributions for Question 4

Time (mins) Loading frequency (%) Unloading frequency (%)

0 to under 30 20 30

30 to under 40 35 40

40 to under 50 22 25

50 to under 60 15   4

60 to under 70   8   1

The frequency distribution of the inter-arrival time – that is, the time between successive 
arrivals – was as shown in Table 17.12.
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Table 17.12  Inter-arrival time distribution

Time (mins) Frequency (%)

0 to under 10 15

10 to under 20 40

20 to under 30 30

30 to under 40 5

40 to under 50 5

50 to under 60 3

60 to under 70 2

You have also made the following assumptions:
(i)	  The pattern of arrivals is constant throughout the day.
(ii)	  A second bay would be used like the first; that is, for loading and unloading.
(iii)	 �A single queue of lorries would form and a lorry could use either bay on a first-

come, first-served basis.
(iv)	 Any lorries in the queue at the end of the day would be loaded or unloaded.

(a)	 Explain why simulation is a better method than experimenting on the real system 
for this problem.

(b)	 How would you go about simulating the system? In your answer you should 
discuss the run length of the simulation and the number of runs required.

(c)	 Demonstrate the technique of simulation by using the tabular method to simulate 
3 hours (180 minutes) of depot operation. What is the average waiting time of 
the lorries?
Random numbers:
20, 17, 42, 96, 23, 17, 28, 66, 38, 59, 38, 61, 
73, 76, 80, 00, 20, 56, 10, 05, 87, 88, 78, 15

(d)	 Repeat the simulation using 2 unloading bays.

Either use your Monte Carlo model developed for Example 17.2 or the one on the website to 
test out the following ideas.

(a)	 What effect will an increase in default rate from 2% to 5% have?
(b)	 Try changing the ‘start-up’ capital from £200m to £500m. What effect does this have 

on the results?
(c)	 Try running the simulation for 60 months (5 years).
(d)	 Run the simulation for 10 years and compare the first and last 5 years. Are there any 

differences between the two?
(e)	 Use several different streams of random numbers to see how different the results 

can be.
(f)	 Try out other ideas you might have.

Assignment


