Part I Investment Basics

INVESTMENT RETURN AND RISK

1. Using a HP17B. Note that the repayments are monthly, so we then need to calculate the interest payable on a monthly basis.

Hence there will be $20 \times 12=240$ payments.
FIN, TVM. NB. Set the payments at 1 P/YR (1 per period). The number of periods then becomes 240 .

PV $+100,000$
IR $\quad 6.85 / 12=0.570833$
FV 0
N 240
PMT -766.32

Answer is (a)

2. We take the monthly standard deviation and multiply by the square root of time. In this case, $5.25 \times \sqrt{12}=18.19 \%$

Answer is (d)

3. First we calculate the purchase price of the CD

$$
\begin{aligned}
& =\frac{\$ 1,000,000\left[1+\left(0.10 \times \frac{180}{360}\right)\right]}{\left[1+\left(0.095 \times \frac{90}{360}\right)\right]} \\
& =\frac{\$ 1,050,000}{1.02375}=\$ 1,025,641.03
\end{aligned}
$$

Then we calculate the sale price of the CD 30 days later as a 60 day CD

PRICE	$=\frac{\$ 1,050,000}{\left[1+\left(0.096 \times \frac{60}{360}\right)\right]}$
	$=\$ 1,033,464.57$

Then we work out the annual holding period return on a 365 day basis

$$
\begin{aligned}
& \begin{array}{c}
\text { HOLDING PERIOD } \\
\text { RETURN }
\end{array} \\
& =\left\{\frac{\$ 1,033,464.57-\$ 1,025,641.03}{\$ 1,025,641.03}\right\} \times \frac{365}{30} \times 100 \\
& =\quad \underline{\underline{9.28 \%}}
\end{aligned}
$$

Answer is (b)

4. The loan commences on 30 Sept for 6-months, terminating on 31 March, 2003 [30 March is a Sunday]. Using the time function on the HP calculator, the actual days in this three-month period are 182.

Accordingly, given a act/365 day count convention, the interest payable on a £1m deposit is: $\quad £ 1 \mathrm{~m} \times 0.04125 \times 182 / 365=£ 20,568.49$

Answer is (b)
5. Cash flows =

Years $\quad \frac{1-5}{\$ 1000} \quad \frac{6-11}{\$ 2000}$

Present Value of the cashflows	$:$	3790.79 Total PV
5408.55 which gives a Future Value of : Required amount:	$\$ 26,246.79 \times(1.10)^{11}$	
Deficiency	$\$ 30,000.00$	
	$\$ 3,753.21$	

The addtional three years annuity with a FV of $\$ 3,753.21$ would be met by equal instalments of $\$ 1,133.91$.

Answer is (c)

