Part III Equities

EQUITIES: ANALYSIS AND VALUATION

1. Answer is (d)

2. Since the historic P/E ratio is 10.0 , the last dividend payment was 20 p and the payout ratio is 40%, we can determine the current stock price:

$$
P_{0}=20 p(10)\left\{\frac{1}{\{0.40\}}\right\}=500 p
$$

Using Gordon’s Growth Model to determine the expected return on the stock:

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{G} \\
& \mathrm{R}=\frac{20(1.12)}{500}+0.12=16.48 \%
\end{aligned}
$$

The incremental return over the Risk-Free rate is therefore 8.48\%

Answer = (d)

3. If last dividend was 30P and dividend payout ratio is 30%, most recent earnings were 100P.

Given a P/E ratio of 20 the current price is evidently 2000P.
We know expected return on equity from Gordon Model is sum of dividend yield in period 1 and growth rate.

$$
R=\frac{30(1.12)}{2000}+0.12=0.1368 \quad(\text { or } 13.68 \%)
$$

Hence the premium over the riskless rate of 6% is 7.68%.

Answer is (e)

4. Remember we have the usual dividend valuation model
$\mathrm{P}_{0}=\frac{\mathrm{D}_{1}}{1.14}+\frac{\left(\mathrm{D}_{2}+\mathrm{P}_{2}\right)}{(1.14)^{2}}$

$$
\begin{aligned}
& \mathrm{P}_{0}=45 \begin{array}{l}
\mathrm{D}_{1}=2.5(1.08)=2.70 \\
\mathrm{D}_{2}=2.5(1.08)^{2}=2.916 \\
(1.14)^{2}
\end{array}=45-\frac{2.70}{(1.14)}-\frac{2.916}{(1.14)^{2}} \\
& \mathrm{P}_{2} \\
& \mathrm{P}_{2}=04(1.14)^{2}-2.70(1.14)-2.916 \\
& =5 \underline{52.488}
\end{aligned}
$$

We can check this by calculating

$$
\begin{aligned}
\mathrm{P}_{2} & =\frac{\mathrm{D}_{3}}{\mathrm{R}-\mathrm{g}}=\frac{2.5(1.08)^{3}}{0.14-0.08} \\
& =\underline{52.488}
\end{aligned}
$$

And rounded to the nearest quarter the share price will be $\$ 52.50$
Answer = (d)
5.

$\frac{\mathrm{P}_{0}}{\mathrm{E}_{0}}$	$=15$
D_{1}	$=10 \mathrm{p}$
$\frac{\mathrm{D}_{1}}{\mathrm{E}_{1}}$	$=50 \%$
E_{1}	$=20 \mathrm{p}$
E_{0}	$=20 \mathrm{p} / 1.07=18.69 \mathrm{p}$
P_{0}	$=15 \times 18.69=280.35 \mathrm{p}$

Formula for Gordon's growth model
$P_{0} \quad=\quad \frac{D_{1}}{R-G}$
$280.35=\frac{10}{\mathrm{R}-0.07}$
$\mathrm{R} \quad=\quad 10.57 \%$

Answer is (c)
6. Answer is (d)

