Part III Equities

PORTFOLIO THEORY

1. Answer is (a)

2. This is given as follows:

$$
\begin{aligned}
& S^{2}=(0.5)^{2}(28)^{2}+(0.5)^{2}(35)^{2}+2(0.5)(0.5) 196=600.25 \\
& S=24.50 \%
\end{aligned}
$$

3. For a perfectly negatively correlated security, we can write

$$
\mathrm{S}^{2}=\left(\mathrm{W}_{1}\right)^{2}\left(\mathrm{~S}_{1}\right)^{2}+\left(\mathrm{W}_{2}\right)^{2}\left(\mathrm{~S}_{2}\right)^{2}-2\left(\mathrm{~W}_{1}\right)\left(\mathrm{W}_{2}\right)\left(\mathrm{S}_{1}\right)\left(\mathrm{S}_{2}\right)
$$

Setting this $=0$ for a risk-free portfolio and recognising that the above equation is a perfect square of $\left(\mathrm{W}_{1} \mathrm{~S}_{1}-\mathrm{W}_{2} \mathrm{~S}_{2}\right)$, we can write
$0=\mathrm{W}_{1} \mathrm{~S}_{1}-\mathrm{W}_{2} \mathrm{~S}_{2}$ or $\mathrm{W}_{1} / \mathrm{W} 2=\mathrm{S}_{2} / \mathrm{S}_{1}$
Substituting, $\mathrm{S}_{1}=10$ and $\mathrm{S}_{2}=20$ gives $\mathrm{W}_{1}: \mathrm{W}_{2}=2: 1$
Answer is (c)

