Part IV Risk Management Products

SWAPS (PART OF FUTURES CHAPTER)

1. Obviously candidates need to check the arrows for each of the positions. For (a) we have:

NET IS PAY FIXED EURO, RECEIVE FLOATING USD. THIS IS CORRECT. ALL THE OTHER COMBINATIONS GIVE THE WRONG RESULT.

Answer is (a)
2. 1. If we receive fixed on a swap, we pay the floating;
2. If we own a floating rate note, we receive the floating;

Therefore, the net effect of receiving fixed on a swap and owning a floating rate note is to receive fixed on an asset package, which is the equivalent of owning a bond.

Answer is (a)
3. We can see the net saving by drawing the swap box diagram:

Net cost to XYZ is:

1. Negative Libor +40 bps
2. Positive Libor +5 bps

3. Negative 7\% Fixed
 Net: 7.35\%

When compared to a fixed funding rate of 7.50% this is a saving of 15 bps .
Answer = (c)
4. The six month period October 1, 2001 through April 1, 2002 is 182 days.

LIBOR Payment	$=$	$-\$ 100,000,000 \times 0.05 \times 182$
	$=$	$-\$ 2,527,777,78$
Dividend	$=$	$\$ 100,000,000 \times 0.015 \times 182$
	$=\$ 758,333.33$	
Capital Gain	$=\$ 100,000,000100$	
		$\$ 8,333,333.33$

Net Payment $=\quad+\$ 6,563,889$
Answer = (c)
5.

The net cost of fixed rate funding for XYZ is
$10 \%-($ LIBOR -0.20$)+$ LIBOR +0.50$)$
$=-\underline{-10.70 \%}$
When compared to XYZ's usual fixed rate funding of 11% this represents a saving of 30 basis points

Answer = (a)
6. The question is the same as asking what would be the par yield on a three period bond given the specific zero curve.

Hence we have to find R in the following
$100=\frac{\mathrm{R}}{1.05}+\frac{\mathrm{R}}{(1.0525)^{2}}+\frac{\mathrm{R}}{(1.055)^{3}}+\frac{100}{(1.055)^{3}}$
$\mathrm{R}=5.48$
Hence the 3-period swap rate on the fixed side is 5.48\%

Answer is (b)

7. Here we use simple bootstrapping to find the 3-year spot rate.

ONE YEAR

$100=\frac{100}{1.05}$

TWO YEAR

$100=\frac{5.25}{1.05}+\frac{105.25}{\left(1+\mathrm{R}_{2}\right)^{2}}$
$R_{2}=5.256579 \%$

THREE YEAR
$100=\frac{5.5}{1.05}+\frac{5.5}{(1.05256579)^{2}}+\frac{105.5}{\left(1+\mathrm{R}_{3}\right)^{3}}$
$R_{3}=\underline{\underline{5.51867 \%}}$

ANSWER IS (c)
8. First we estimate the one, two and three year discount factors:

$$
\begin{aligned}
& \frac{1}{1.10}=0.90909091 \\
& \frac{1}{(1.10)(1.11)}=0.81900082 \\
& \frac{1}{(1.10)(1.11)(1.1225)}=0.72962211
\end{aligned}
$$

Then we can find the three year per swap rate by finding the coupon yield on a three year bond priced at par.
$100=\mathrm{C}(0.90909091)+\mathrm{C}(0.81900082)+\mathrm{C}(0.72962211)+100(0.72962211)$
$C=11.001194 \%$

ANSWER IS (b)

