Understanding Structures, $5^{\text {th }}$ edition
 Derek Seward

Solutions to end-of-chapter exercises

Contents
Chapter 1 - Design 2
Chapter 2 - Basics 9
Chapter 3 - Materials 12
Chapter 4 - Loads 16
Chapter 5 - Pin-jointed trusses 18
Chapter 6 - Tension 20
Chapter 7 - Beams 24
Chapter 8 - Compression 30
Chapter 9 - Combined axial and bending stresses 32
Chapter 10 - Torsion 36
Chapter 11 - Connections 38
Chapter 12 - Arches and portal frames 41
Chapter 13 - Foundations and retaining walls 45
Chapter 14 - Deflection 50
Chapter 15 - Indeterminate structures and computers 53

Chapter 1 - Design

E1.1

a. A tree trunk acts as a vertical cantilever beam to resist wind force. Roots transfer the load into the ground

b. An apple stalk is a tension member transferring the weight of the apple back to the tree. Vines and trailing plants are also tension structures

c. Creatures such as crabs have exo-skeletons. This is a "shell" structure which provides the strength and shape on the outside of the flesh.

d. Step ladders are an example of a structure to transfer the weight of a person down to the ground. The feet are prevented from moving apart partly by the tensile rope and partly by friction on the ground.

e. A bed is a similar structure to a bridge and consists of a beam spanning between compressive columns.

f. The shelf bracket transfers the load back to the wall with the help of screws. The diagonal member is a compressive 'strut' and reduces bending in the bracket.

E1.2

a1. Steel lattice tower with tension guys.

a2. Concrete shell with restaurant.

b1. Shell dome with flying buttresses.
b2. Cable-supported 'tent' roof (cross-section)

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E1.3

Stage 1 - site survey
Determine the most suitable point to cross the stream taking into account:

- Stream width
- Height of banks
- Foundation material (any mid-stream rocks for extra support?)
- Location of access roads.

Carry out a detailed survey and produce a cross-section of the chosen point - drawn to scale:

Stage 2 - alternative concepts

Comments:
a. Best appearance and long life, but expensive and difficult,
b. Reasonably good appearance, fairly cheap and easy but possibly short life,
c. Robust and easy but requires maintenance for long life,
d. Least attractive but cheap and easy.

Choose say b.

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Stage 4 - Assessment of loads

This can be tricky and very much depends upon who has access to the bridge. Is it accessible by the public and emergency vehicles? If this is the case the bridge will need to be designed for loads specified in Eurocode 1-2. If the bridge merely provides a link between two fields and will only be used by the farmer for movement of animals and a tractor and trailer the load requirements may be more relaxed. The local building regulation authority should be contacted for advice.

Assuming use by only the farmer:

Animals: Design for say the number of cows that can fit on the bridge x weight of one cow. (about 1000 kg each?). Side load, P, on the handrail might be 20% of cow weight?

Vehicles: The highest axle loads should be placed at various points in the span.

Stage 5 Analysis

Structural model:

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Stage 6 - detail design

possible failure modes:

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E1.4

a. Permissible stress design

Total load in rod	$=12+16=28 \mathrm{kN}$
Area required	$=$ force $/$ stress $=28 \times 10^{3} / 150$
	$=187 \mathrm{~mm}^{2}$

b. Limit state design

Design permanent load	=	12×1.35	=	16.2 kN		
Design variable load	=	16×1.5	=	24.0 kN		
Total design load			$=$	40.2 kN		
Design strength	=	$\mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M}}$	=	275/1.0	$=$	275 N/mm ${ }^{2}$
Area required	=	40.2×10^{3}	$=$	146 mm ${ }^{2}$		

Chapter 2 - Basics

E2.1

Figure 2.15
Traction weights in kg

a.	Force from 2.0 kg weight	=	2.0×9.81	=	19.6 N
	Force from 3.5 kg weight	=	3.5×9.81	$=$	34.3 N
	Structural model:		(30		
b.	Horizontal component of force	$=$	$34.3 \cos 30^{\circ}$	$=$	$\underline{29.7} \mathrm{~N} \leftarrow$
	Vertical component of force	$=$	$19.6+34.3 \sin 30^{\circ}$	$=$	$36.8 \mathrm{~N} \uparrow$
c.	Magnitude of resultant force	$=$	$\sqrt{ }\left(29.7^{2}+36.8^{2}\right)$	=	47.3 N
	Direction of resultant force		$\tan ^{-1}(36.8 / 29.7)$	=	51.1 ${ }^{\circ}$

d. Stress in cable $=$ Force/Area $=34.3 /\left(\pi \times 1.5^{2} / 4\right)$

$$
=\quad 19.4 \mathrm{~N} / \mathrm{mm}^{2}
$$

E2. 2

Figure 2.16
Pin-jointed structure

a. $F_{C H}=20 \operatorname{Cos} 30^{\circ}=17.32 \mathrm{kN}$
$F_{C H}=20 \operatorname{Sin} 30^{\circ} \quad=10.0 \mathrm{kN}$
b.

Support B is a roller $\therefore R_{B H}=0$
$\Sigma \mathrm{M}$ about A

$$
\begin{aligned}
&(17.32 \times 0.75)+(10 \times 3.5)= \\
& R_{\mathrm{BV}}=\quad R_{\mathrm{BV}} \times 2.0 \\
& \underline{\mathbf{2 4 . 0} \mathbf{k N} \uparrow}
\end{aligned}
$$

$\Sigma \mathrm{H}=0$
$R_{\text {AH }} \quad=\quad \underline{17.32 \mathrm{kN} \leftarrow}$
$\Sigma \mathrm{V}=0$
$10.0+R_{\mathrm{AV}} \quad=\quad 24.0 \mathrm{kN}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

$$
R_{\mathrm{AV}}=\quad 14.0 \mathrm{kN} \downarrow
$$

E2.3

No horizontal forces or reactions
a. $\quad \Sigma \mathrm{M}$ about A
$10 \times 3=5 \times R_{\mathrm{A}}$
$R_{\mathrm{A}}=6 \underline{\mathbf{k N} \uparrow}$
$\Sigma \mathrm{V}=0$
$10=6+R_{C}$
$R_{C} \quad=\quad \underline{\mathbf{k N} \uparrow}$ i.e. tension in rod
structural model:

Figure 2.17
Beam and tie structure

b. Area of rod $=\pi \times 10^{2} / 4=78.5 \mathrm{~mm}^{2}$
Stress $=$ force/area $=4 \times 10^{3} / 78.5=\underline{51 \mathrm{~N} / \mathrm{mm}^{2}}$
c. Extension, $\delta=\mathrm{FL} / \mathrm{EA} \quad$ where $E=205 \mathrm{kN} / \mathrm{mm}^{2}$

$$
\delta=4 \times 10^{3} \times 3000 / 205000 \times 78.5=\underline{\mathbf{0 . 7 5} \mathbf{~ m m}}
$$

Chapter 3 - Materials

E3.1

a. Underground water storage reservoir

Choice: Reinforced concrete

Reasons:

- Will resist bending from water pressure
- Can be made waterproof with additives
- Durable and requires no maintenance if cover to reinforcement adequate
- Relatively cheap
- Can be formed on-site from locally available materials
b. Footbridge in chemical plant

Choice: Fibre composite

Reasons:

- Resistant to chemical attack
- No maintenance required
- Lightweight and easily transported
c. Portable grandstand

Choice: Aluminium alloy

Reasons:

- Lightweight and easily transported
- Good range of extrusions available
- Can be welded
- Can be painted or anodised for good corrosion protection
- Stiffer than fibre composite

E 3.2

a. Yield stress, f_{y}, and Modulus of elasticity, E
b. Gauge length is the initial length of the specimen for the purposes of measuring extension and hence strain and modulus of elasticity.
c. Plastic behaviour means that materials are ductile. (i.e. they can be deformed by large amounts without losing their strength. The opposite of brittle.
d. Because by the time mild steel has reached its ultimate strength it will have deformed excessively. Keeping below the yield strength means that permanent deformations do not take place.
e. Yield point (i.e. start of plastic behaviour), limit of proportionality (i.e. end of linear behaviour where strain is proportional to stress) and elastic limit (i.e . end of reversible deformation).

E3.3

Area of specimen	$=$	$\pi / 4 \times 5^{2}=19.63 \mathrm{~mm}^{2}$
Stress	$=$	load/area
\% Strain	$=$	$100 \times$ extension/gauge length

Load (kN)	Extension (mm)	Stress (N/mm $\mathbf{m}^{\mathbf{2}}$	\% Strain
0.00	0.00	0	0.000
1.00	0.01	51	0.025
2.00	0.02	102	0.050
3.00	0.03	153	0.075
4.00	0.04	204	0.100
5.00	0.05	255	0.125
5.32	0.06	271	0.150
5.38	0.07	274	0.175
5.34	0.08	272	0.200

From graph:
a. Yield stress, f_{y}
$274 \mathrm{~N} / \mathrm{mm}^{2}$
b. Modulus of elasticity, $E=204 / 0.001=\underline{204000 ~ N / m^{2}}$

E3.4

Result (x)	$\left(\boldsymbol{x}-\boldsymbol{x}_{\mathrm{m})}\right.$	$\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{m}}\right)^{\mathbf{2}}$
455	-4	16
467	8	64
449	-10	100
452	-7	49
471	12	144
$\underline{462}$	3	$\underline{9}$
2756		382

Mean x_{m}	$=$	$2756 / 6$	$=$
Standard deviation	$=$	$\sqrt{ }\left[\left(x-x_{m}\right)^{2} /(\mathrm{n}-1)\right]=$	389
	$=$	8.74	
Characteristic strength	$=$	$459-1.59 \times 8.74$	
	$=$	$445 \mathrm{~N} / \mathrm{mm}^{2}$	
Design strength	$=$	Characteristic strength $/ \gamma_{\mathrm{M}}$	
	$=445 / 1.15=387 \mathrm{~N} / \mathrm{mm}^{2}$		

Chapter 4 - Loads

E4.1

From table 4.1 unit weight of steel $=\quad 70 \mathrm{kN} / \mathrm{m}^{3}$
\therefore Weight of of 1 square meter of plate 6 mm thick $=70 \times 0.006=0.42 \mathrm{kN} / \mathrm{m}^{2}$
a. Characteristic permanent load
$=\quad \underline{0.42 \mathrm{kN} / \mathrm{m}^{2}}$
b. From table 4.3 variable floor load for factory $=5.0 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
\therefore \text { Total design load } & =(1.35 \times 0.42)+(1.5 \times 5.0) \\
& =\quad \underline{8.07} \mathbf{k N} / \mathbf{m}^{2}
\end{aligned}
$$

E4. 2

a.

Resultant occurs at centroid of triangle i.e. $1 / 3^{\text {rd }}$ of height.

a. Force	$=$	$38.25 \times 4.5 / 2$	$=$
b. Bending moment	$=$	$\underline{86.1} \mathbf{~ k N m}$	
		86.1×1.5	$=$

E4.3

	Area of each floor	$=$	60×60	$=$	$3600 \mathrm{~m}^{2}$
From table 4.1	Wt. of floor/m ${ }^{2}$	$=$	25×0.2	$=$	$5 \mathrm{kN} / \mathrm{m}^{2}$
Wt. of on	one entire floor	$=$	3600×5	$=$	18000 kN
Wall are	ea per storey	$=$	$4 \times 4 \times 60$	$=$	$960 \mathrm{~m}^{2}$
Weight	of wall per storey	$=$	960×1.0	$=$	960 kN
Total pe	ermanent load/storey	$=$	$18000+960$	$=$	18960 kN
From table 4.3	Variable load per floor	$=$	3600×2.5	$=$	9000 kN
Total design load		$=$	$110 \times[(1.35 \times 18960)+(1.5 \times 9000)]$		
		$=$	$4.30 \times 10^{6} \mathrm{kN}$		

E4.4

The following is for a 1 m wide strip of the floor (into the page):

From table 4.1 Permanent load of wall	$22 \times 0.215 \times 1.0$	=	4.73 kN/m
Design permanent wall load	4.73×1.35	=	$5.81 \mathrm{kN} / \mathrm{m}$
Permanent load of slab	25×0.3	=	$7.5 \mathrm{kN} / \mathrm{m}$
Design permanent slab load	1.35×7.5	=	10.1 kN/m
From table 4.3 Variable load on slab	$2.5 \mathrm{kN} / \mathrm{m}$		
Design variable load	1.5×2.5	=	3.75 kN/m
Total slab design load	$10.1+3.75$	=	13.85 kN/m

Load on beam is reaction at A - take moments about B :

$$
\begin{aligned}
& R_{\mathrm{A}} \times 8.0= \\
& R_{\mathrm{A}}= \\
&(5.81 \times 9.8)+(13.85 \times 9.8 \times 9.8 / 2) \\
& \text { Design self-weight of beam }= \\
& \text { Total design load on beam }=140.25 \mathrm{kN} / \mathrm{m} \\
& \\
& 90.25+1.9
\end{aligned}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 5 - Pin-jointed trusses

E5.1

E5. 2

E5. 3

Solutions to the end of chapter exercises for Understar cut ructures fifth edition by Derek Seward © Derek Seward 2014

Consider only the left-hand-side of the cut:
$\Sigma \mathrm{M}$ about E for F_{BC} :

$$
\begin{array}{rlrl}
F_{\mathrm{BC}} \times y_{\mathrm{E}} & = & R_{\mathrm{A}} \times 8 \\
F_{\mathrm{BC}} \times 4.85 & & 260 \times 8 \\
F_{\mathrm{BC}} & & & \underline{\mathbf{4 2 9} \mathbf{k N} \text { compression }}
\end{array}
$$

$\Sigma \mathrm{M}$ about x for F_{CE} :

$$
\begin{aligned}
(180 \times 20) & =(260 \times 12)+\left(F_{\mathrm{CE}} \times 16.64\right) \\
F_{\mathrm{CE}} & =\underline{\mathbf{2 8 . 8} \mathbf{k N} \text { tension }}
\end{aligned}
$$

E5.4

a. $\quad m=13, j=6 \quad \therefore i(1)$
b. $m=11, j=5+$ reduced roller support, but formula doesn't work - actually $m+i(1)$
c. $m=16, j=8$ extra roller $\therefore i(1)$
d. $m=8, j=4 \quad \therefore s$
e. $m=11, j=5 \quad \therefore i(1)$

Chapter 6-Tension

E6.1

From text: $\quad f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\gamma_{\mathrm{M} 0}=1.0, \gamma_{\mathrm{M} 2}=1.1
$$

Option a)

$$
\begin{aligned}
\text { Min. } A_{\text {gross }} & =\frac{150 \times 10^{3}}{1.0}=545 \mathrm{~mm}^{2} \\
A_{\text {net }} & =\frac{150 \times 10^{3}}{\frac{0.9 \times 410}{1.1}}=447 \mathrm{~mm}^{2} \\
W & =447 / 5+22=111.4 \text { say } 115 \mathrm{~mm} \\
A_{\text {gross }} & =115 \times 5=575 \mathrm{~mm}^{2}>545 \mathrm{~mm}^{2}
\end{aligned}
$$

Option b)

	$A_{\text {gross }}$	$=$
$\mathbf{5 4 5} \mathrm{mm}^{2}$	as above	
From appendix	$\underline{\text { use } 60 \times 60 \times 5}$ Angle $\quad\left(A=582 \mathrm{~mm}^{2}\right)$	

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E6.2

From symmetry consider only half of the structure:

a.

T

$$
\theta=\tan ^{-1}(2 / 3)=33.7^{\circ}
$$

From vertical equilibrium:
vertical component of force $F_{2}=2 \mathrm{kN}$

$$
\therefore F_{2} \operatorname{Sin} 33.7^{\circ} \quad=\quad 2.0
$$

Force in cable at support, $F_{2}=\quad \underline{3.60} \mathbf{~ k N}$

From horizontal equilibrium:
Force in cable at midspan, $F_{1}=3.60 \operatorname{Cos} 33.7^{\circ}=3.00 \mathbf{~ k N}$
b.

Area of cable required	$=$	$3600 /(1200 / 5)$	$=$
Diameter	$=$	$\sqrt{ }(15 \times 4 / \pi)$	$=$

Use 5mm diameter cable

E6.3
Total design load $=(1.35 \times 6)+(1.5 \times 5 \times 2) \quad$ [where 2 is the width $)$
$=\quad 23.1 \mathrm{kN} / \mathrm{m}$

Diagram identical for both main span and side-spans
[6.4] $R_{V}=w L / 2=23.1 \times 64 / 2=739 \mathrm{kN}$

$$
\begin{equation*}
R_{\mathrm{H}}=w L^{2} / 8 \mathrm{D}=\left(23.1 \times 64^{2}\right) /(8 \times 15) \tag{6.5}
\end{equation*}
$$

788 kN
a. Max cable force at support $=0.5 \times \sqrt{ }\left(739^{2}+788^{2}\right)=\mathbf{5 4 0} \mathbf{~ k N}$
[0.5 above is because of two cables]
b. Compressive force in tower = vert. component in cables at each side
$=\quad 2 \times 739=1478 \mathrm{kN}$
c. Area of cable required $=$ Force $/\left(\right.$ strength $\left./ \gamma_{M}\right)=540 \times 10^{3} /(1590 / 3)$
$=1019 \mathrm{~mm}^{2}$

Diameter $=\sqrt{ }[(4 \times 1019) / \pi]=36.02 \mathrm{~mm}$
say $\mathbf{4 0 \mathrm { mm }}$
d.Horizontal force on cable anchor $=R_{H} / 2=788 / 2=394 \mathbf{~ k N}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E6.4
Design variable load from one light $=2.5 \times 1.5 \times 9.81=368 \mathrm{~N}$

a.
$\Sigma \mathrm{M}$ about A

$$
\begin{array}{rll}
(368 \times 1.3)+(368 \times 4.7) & = & (368 \times 0.7)+\left(R_{\mathrm{B}} \times 4.4\right) \\
R_{\mathrm{B}} & = & 443 \mathrm{~N}
\end{array}
$$

$\Sigma V=0$

$$
\begin{aligned}
R_{\mathrm{A}} & = \\
& =\quad(3 \times 368)-443 \\
& \underline{661 ~ N}
\end{aligned}
$$

b.

Area of wire required	$=661 /(300 / 5)=11.01 \mathrm{~mm}^{2}$
Diameter of wirte	$=\sqrt{ }[(4 \times 11.01) / \pi]=3.75$ say 4.0 mm

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 7 - Beams

E7.1

$$
\begin{aligned}
& \sum M \text { abE } A \\
& \begin{aligned}
&(3 \times 1)+(5 \times 2 \times 2)+(5 \times 4)=R_{B} \times 3 \\
& R_{B}=\frac{43}{3}=14.33 \mathrm{kN} 9 \\
& \sum U=0
\end{aligned} \\
& \begin{aligned}
\sum A & =3+10+5-14.33 \\
& =3.67 \mathrm{kN} 9 \\
& =1+\frac{0.67}{5}=1.13 \mathrm{~m} \\
X & =(3.67 \times 1.13)-\left(5 \times \frac{0.13^{2}}{2}\right)-(3 \times 0.13) \\
M_{\text {sag }} & =\frac{3.71 \mathrm{kNm}}{}
\end{aligned}
\end{aligned}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Not rally relevant as it is a min. not a max

$$
\begin{gathered}
\sum M \text { about } A \\
(5 \times 2.7 \times 1.35)+(7 \times 2.7)=(3 \times 1.5)+\left(R_{B} \times 4.1\right) \\
R_{B}=8.0 \mathrm{kN} .
\end{gathered}
$$

$$
\begin{aligned}
& \sum v=0 \\
& 3+(5 \times 2.7)+7=R_{A}+8.0 \\
& R_{A}=15.5 \mathrm{kN} \\
&=1.5+\frac{12.5}{5} \\
& x=4.0 \mathrm{~m} \\
& M_{x}=(8 \times 1.6)-(7 \times 0.2)-\left(5 \times 0.2^{2} / 2\right) \\
&=11.3 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E7. 2

Bending moment	$=$	$w l^{2} / 8=22 \times 8.0^{2} / 8$	$=176 \mathrm{kNm}$
f_{y}	$=$	$275, \quad \gamma_{M}$	$=1.0$
\therefore required $W_{\text {pl }}$	$=$	$\left(176 \times 10^{6}\right) /\left(275 \times 10^{3}\right)$	$=640 \mathrm{~cm}^{3}$

Use $406 \times 140 \times 39 \mathrm{~kg} / \mathrm{m}$ Universal Beam

E7.3

a.

Total area	$=$	$9+6+6$
	$=21 \mathrm{~cm}^{2}$	
Half area	$=21 / 2$	
	$=10.5 \mathrm{~cm}^{2}$	

For the plastic modulus the neutral axis divides the total area into two equal parts.

$$
Y=1.0+(10.5-6) / 0.8=6.625 \mathrm{~cm}
$$

Item	$A\left(\mathrm{~cm}^{2}\right)$	$Y(\mathrm{~cm})$	$A y\left(\mathrm{~cm}^{3}\right)$
1	9	3.375	30.3
2	1.5	0.938	1.4
3	4.5	2.813	12.7
4	6	6.125	$\underline{36.8}$
			81.3

Plastic modulus, $W_{\text {pl }}=81.3 \mathrm{~cm}^{3}$
b.

$$
\begin{array}{rlll}
\text { Design load } & =(1.35 \times 0.9)+(1.5 \times 3.5) & =6.47 \mathrm{kN} / \mathrm{m}^{2} \\
\text { Design load } / \mathrm{m}, w & =6.47 \times 0.35 & =\underline{\mathbf{2 . 2 6} \mathrm{kN} / \mathrm{m}}
\end{array}
$$

c.

$$
\begin{array}{rllll}
\text { Design bending moment } & = & \left.w\right|^{2} / 8 & = & 2.26 I^{2} / 8 \\
\text { Design resistance moment } & = & W_{\mathrm{pl}} \times f_{\mathrm{y}} & = & 81.3 \times 275 / 10^{3} \\
& = & 22.36 & & \\
\text { Equating }(1) \text { and }(2) & & & & \\
2.26 I^{2} / 8 & = & 22.36 & & \\
I_{\max } & = & 8.9 \mathrm{~m} & &
\end{array}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E7.4

a. Design load $=10 \times 1.5=\underline{15 \mathbf{k N}}$

$$
\begin{aligned}
\text { Lever arm, I } & =0.8 \cos 45^{\circ} \\
& =0.566 \mathrm{~m}
\end{aligned}
$$

$\Sigma \mathrm{M}$ about A :

15×1.7	$=$	$F_{B D} \times 0.566$
Force in ram, $F_{B D}$	$=$	$\underline{45.1} \mathbf{~ k N}$

$\Sigma \mathrm{M}$ about E :

$$
\begin{array}{rll}
15 \times 1.7 & = & R_{\mathrm{F}} \times \times 2.2 \\
R_{\mathrm{F}} & = & \underline{11.59 \mathbf{k N}}
\end{array}
$$

$\Sigma \mathrm{V}=0$:

$$
\begin{aligned}
15 & =11.59+R_{\mathrm{E}} \\
R_{\mathrm{E}} & =3.41 \mathrm{kN}
\end{aligned}
$$

c.

$M_{\text {max }}=15 \times 0.9 \quad=\quad 13.5 \mathrm{kNm}$

$W_{\text {pl }}$ required	$=\left(13.5 \times 10^{6}\right) /\left(275 \times 10^{3}\right)$
	$=49.1 \mathrm{~cm}^{3}$

From appendix:

Use $100 \times 100 \times 4.0$ square hollow section $\left(W_{\mathrm{pl}}=54.9 \mathrm{~cm}^{3}\right)$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E7.5

Part	Area $\mathbf{(m m}^{\mathbf{2}} \mathbf{)}$	$\boldsymbol{y}_{\boldsymbol{n}}$	$\mathbf{A} \boldsymbol{y}_{\mathbf{n}}$	\boldsymbol{y}	$\boldsymbol{A y}^{\mathbf{2}}$	$\boldsymbol{I}_{\text {self }}$
Rectangle	600	20	12000	1.51	1368	80000
Hole	$\underline{-78.5}$	30	$\underline{-2355}$	11.51	$\underline{-10400}$	$\underline{-491}$
	521.5		9645		-9032	79509

$$
\begin{aligned}
& \begin{array}{llll}
Y & =9645 / 521.5 & = & 18.49 \\
I_{\mathrm{NA}}= & 79509-9032 & = & 70477 \mathrm{~mm}^{4} \\
W_{\text {el,top }}=70477 /(40-18.49) & = & 3276 \mathrm{~mm}^{3} \\
W_{\text {el,bottom }}=70477 / 18.49 & = & 3812 \mathrm{~mm}^{3}
\end{array} \\
& \sigma_{\text {top }}=0.5 \times 10^{6} / 3276=153 \mathrm{~N} / \mathrm{mm}^{2} \text { compression } \\
& \sigma_{\text {bottom }}=0.5 \times 10^{6} / 3812=131 \mathrm{~N} / \mathrm{mm}^{2} \text { tension }
\end{aligned}
$$

E7.5

a. Effective depth, $d=450-3012.5=407.5 \mathrm{~mm}$

$$
\begin{aligned}
\text { But } M_{E d} & =w l^{2} / 8 \\
\therefore I & =40 I^{2} / 8 \\
\therefore \quad \sqrt{ } 8 \times 139.3 / 40) & =\underline{\mathbf{5 . 2 8} \mathbf{m ~ s p a n}}
\end{aligned}
$$

b. Shear force on beam, V_{Ed}	$=5.28 \times 40 / 2=105.6 \mathrm{kN}$
Design shear stress, v_{Ed}	$=105.6 \times 10^{3} /(200 \times 407.5)=1.30 \mathrm{~N} / \mathrm{mm}^{2}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 8-Compression

E8. 1

From equation $8.1 \quad N_{\mathrm{Rd}}=f_{\mathrm{ck}} / \gamma_{\mathrm{c}} \times b \times h_{\mathrm{w}} \times\left(1-2 e / h_{\mathrm{w}}\right)$
Where: Eccentricity, $e=\quad I_{w} / 400=3750 / 400$ $=\quad 9.4 \mathrm{~mm}$
$\therefore \quad N_{\text {Rd }}=40 / 1.5 \times 400 \times 400 \times(1-2 \times 9.4 / 400) \times 10^{-3}$ $=\quad 4066 \mathrm{kN}$

E8. 2

$$
\text { For } \begin{array}{rl}
10 \mathrm{~mm} \times 10 \mathrm{~mm} \text { strut, } \mathrm{I} & = \\
\text { For steel }, E & b d^{3} / 12=\quad 10 \times 10^{3} / 12=833 \mathrm{~mm}^{4} \\
\text { Euler buckling load , } P_{\text {crit }} & = \\
& 210000 \mathrm{~N} / \mathrm{mm}^{2} \\
& =\underline{\pi^{2} E I / L^{2}=} \pi^{2} \times 210000 \times 833 / 900^{2} \\
& \underline{\mathbf{2 1 3 0} \mathbf{N}}
\end{array}
$$

E8.3

Design load	$=250 / 2 \times 1.5$	$=187.5 \mathrm{kN}$
Approximate area	$=187.5 \times 10^{3} / 100 \times 10^{2}=18.7 \mathrm{~cm}^{2}$	

From appendix \quad Try 114.3×6.3 circular hollow section $\left(A=21.4 \mathrm{~cm}^{2}, i=3.82 \mathrm{~cm}\right)$

From appendix Try 168.3×5.0 circular hollow section ($A=5.7 \mathrm{~cm}^{2}, i=5.78 \mathrm{~cm}$)

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

| Non-dimensional slenderness, λ | $=7000 /(86 \times 57.8)$ | $=1.4$ |
| ---: | :--- | :--- | :--- |
| From fig 7.38 $=$
 Buckling stress $=0.38$
 Actual stress $=275 \times 0.38$ | | |
| | $=187.5 \times 10^{3} / 25.7 \times 10^{2}$ | $=104.5 \mathrm{~N} / \mathrm{mm}^{2}$ |

Use 168.3×5.0 circular hollow section

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 9-Combined axial and bending stresses

E9.1

Axial load, N_{Ed}	$=$	$675+450+590$
	$=$	1715 kN
Approx. area required	$=$	$1715 \times 10^{3} / 100 \times 10^{2}$
	$=172 \mathrm{~cm}^{2}$	

Try $305 \times 305 \times 137$ Universal Column

$$
\left(A=175 \mathrm{~cm}^{2}, W_{\mathrm{pl}, \mathrm{y}}=2300 \mathrm{~cm}^{3}, W_{\mathrm{pl}, \mathrm{z}}=1052 \mathrm{~cm}^{3}, i_{z}=7.82 \mathrm{~cm},\right.
$$

$$
\left.h=320.5, t_{f}=13.8\right)
$$

Dimensions as shown

$$
\begin{aligned}
M_{\mathrm{yEd}} & =(675-590) \times(0.160+0.1) \\
& =22.1 \mathrm{kNm} \\
M_{\mathrm{zEd}} & =450 \times(0.007+0.1) \\
& =48.2 \mathrm{kNm}
\end{aligned}
$$

Non-dimensional slenderness ratio, $\lambda=L_{\mathrm{E}} /\left(86 \times i_{z}\right)=6000 /(86 \times 78.2)$
$=0.89$
From [9.2]

| | \mid |?

$$
\begin{array}{lll}
A \chi f_{\mathrm{y}} & \chi_{\llcorner\tau} f_{\mathrm{y}} W_{\mathrm{pl}, \mathrm{y}} & f_{\mathrm{y}} W_{\mathrm{pl}, \mathrm{z}}
\end{array}
$$

From fig 7.38

$$
\chi \quad=\quad 0.55
$$

| Buckling stress | $=0.55 \times 275$ | $=$ | $151 \mathrm{~N} / \mathrm{mm}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Bending stress | $=0.55 \times 275$ | $=$ | $151 \mathrm{~N} / \mathrm{mm}^{2}$ |
| \therefore Axial resistance, $A \chi f_{\mathrm{y}}=$ | $175 \times 151 \times 10^{-1}$ | $=$ | 2642 kN |
| y-y bending resistance, $\chi_{\llcorner\tau} f_{\mathrm{y}} W_{\mathrm{pl}, \mathrm{y}}=$ | $151 \times 2300 \times 10^{-3}$ | $=$ | 347 kNm |
| $\mathrm{z}-\mathrm{z}$ bending resistance, $f_{\mathrm{y}} W_{\mathrm{pl}, \mathrm{z}}$ | $=275 \times 1052 \times 10^{-3}$ | $=$ | 289 kNm |

substitute into equation [9.2]

Use $305 \times 305 \times 137$ Universal Column

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E9. 2

a.

E9.3

Elastic moduli:

$$
\begin{array}{lll}
W_{\text {el,top }}= & 18000 / 10 & = \\
W_{\text {el,bottom }}= & 18000 / 15 & =1800 \mathrm{~cm}^{3} \\
1200 \mathrm{~cm}^{3}
\end{array}
$$

Sagging BM:

$$
\sigma_{\text {bottom }}=24 \times 10^{6} / 1200 \times 10^{3}=20 \mathrm{~N} / \mathrm{mm}^{2} \text { tension }
$$

Hogging BM :

$$
\sigma_{\text {top }}=9 \times 10^{6} / 1800 \times 10^{3}=5 \mathrm{~N} / \mathrm{mm}^{2} \text { tension }
$$

\therefore Required pre-stress

Stress at N.A. level $=5+(15 \times 10 / 25)=11 \mathrm{~N} / \mathrm{mm}^{2}$
\therefore pre-stressing force $=11 \times 200 \times 10^{2} / 10^{3}=\underline{220} \mathbf{~ k N}$
Consider top stresses, $\sigma_{\text {top }}=P / A-P e / W_{\text {el,top }}=5$ $5=11-220 \times 10^{3} \times e / 1800 \times 10^{3}$
$5=11-0.122 e$
$e \quad=\quad 49.2 \mathrm{~mm}$
Check bottom stresses, $\sigma_{\text {bottom }}=\quad 11+220 \times 10^{3} \times 49.2 / 1200 \times 10^{3}$
$=11+9.02=20.02 \mathrm{~N} / \mathrm{mm}^{2}$ - check

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 10 -Torsion

E10.1

$$
\begin{aligned}
T_{\text {ult }} & =2 \tau_{\mathrm{y}} \pi R^{3} / 3 \\
& =2 \times 159 \times \pi \times 15^{3} / 3 \\
& =1124000 \mathrm{Nmm} \\
& =\underline{1.12 \mathrm{kNm}} \\
\phi & =L \tau / G R \\
& =(3000 \times 90) /(77000 \times 15) \\
& =0.234 \mathrm{rad} \\
& =13.4^{\circ}
\end{aligned}
$$

E10.2

a.

Area of sign	$=$	1.8×0.9	=	$1.62 \mathrm{~m}^{2}$
Design load	=	1.62×1.1	=	1.782 kN
Bending moment	=	1.782×2.8	=	4.98 kNm
Torque	=	$1.782 \times(0.4+0.9 / 2)$	=	1.51 kNm
b.				
Plastic modulus for bending, $W_{\text {pl }}$	$=$	$4.98 \times 10^{6} / 275 \times 10^{3}$	=	$18.1 \mathrm{~cm}^{3}$

Try $60 \times 60 \times 4.0$ square hollow section $\left(W_{\mathrm{pl}}=18.6 \mathrm{~cm}^{3}\right)$

Equation [10.6]	$\tau_{\text {bending shear }}$ A_{m}	$=$	1782/($2 \times 60 \times 4$)		$3.7 \mathrm{~N} / \mathrm{mm}^{2}$
		=	56×56		$3136 \mathrm{~mm}^{2}$
	$\tau_{\text {torsion shear }}$	=	$T / 2 A_{\mathrm{m}} t$	-	$1.51 \times 10^{6} /(2 \times 3136 \times 4)$
		=	$60.2 \mathrm{~N} / \mathrm{mm}^{2}$		
	$\tau_{\text {total }}$	=	$3.7+60.2$	=	$63.9 \mathrm{~N} / \mathrm{mm}^{2}<159 \checkmark$

Use $60 \times 60 \times 4.0$ square hollow section

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E10.3

Equation [10.7]
$\tau_{\text {max }}$
$=3 T / a t^{2}$
Where
a
$=\quad 145+70$
$=\quad 215 \mathrm{~mm}$
$\tau_{\max }=3 \times 1.2 \times 10^{6} /\left(215 \times 10^{2}\right)$
$=167 \mathrm{~N} / \mathrm{mm}^{2}$
b.

$$
\begin{aligned}
\theta & =3 T L / a t^{3} G \\
= & \frac{3 \times 1.2 \times 10^{6} \times 4000}{215 \times 10^{3} \times 77000} \\
& =0.870 \mathrm{rad}
\end{aligned}
$$

Chapter 11 - Connections

E11.1

a.
based on gross area of tie - equation [6.2]
$N_{\text {Rd }}=70 \times 10 \times 275 / 10^{3}=192.5 \mathrm{kN}$
based on net area of tie - equation [6.3]
$N_{\text {Rd }}=(70-24) \times 10 \times 0.9 \times 410 /\left(1.1 \times 10^{3}\right)=154.3 \mathrm{kN}$
b.
based on shear capacity - equation [11.3]
$F_{\mathrm{v}}=2 \times 0.6 \times 400 \times \pi \times 11^{2} \times 10^{-3} / 1.25=146.0 \mathrm{kN}$
c.
based on bearing capacity - equation [11.4]
$F_{\mathrm{b}}=2 \times 400 \times 22 \times 10 \times 10^{-3} / 1.25=140.8 \mathrm{kN}$

Design resistance, $N_{\text {Rd }}=140.8 \mathrm{kN}$

E11.2

a.
based on gross area of tie - equation [6.2]- as above
$N_{\text {Rd }}=70 \times 10 \times 275 / 10^{3} \quad=\quad 192.5 \mathrm{kN}$
based on net area of tie - equation [6.3]
$N_{\text {Rd }}=(70-22) \times 10 \times 0.9 \times 410 /\left(1.1 \times 10^{3}\right)=161.0 \mathrm{kN}$
b.
based on slip resistance - equation [11.5]

$$
F_{\mathrm{v}} \quad=\quad 2 \times 0.7 \times 1 \times 0.5 \times 800 \times 245 \times 10^{-3} / 1.25=\quad 109.80 \mathrm{kN}
$$

c.
based on bearing capacity - equation [11.4]
$F_{\mathrm{b}}=2 \times 400 \times 20 \times 10 \times 10^{-3} / 1.25=128 \mathrm{kN}$
Design resistance, $N_{\text {Rd }} \quad=\quad \underline{109.8} \mathbf{~ k N}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E11.3

Item	$\boldsymbol{A}\left(\mathbf{c m}^{\mathbf{2}}\right)$	$\boldsymbol{y}_{\mathbf{n}}(\mathbf{c m})$	$\boldsymbol{A} \boldsymbol{y}_{\boldsymbol{n}}\left(\mathbf{c m}^{\mathbf{3}}\right)$	$\boldsymbol{Y}(\mathbf{c m})$	$\boldsymbol{A y}^{\mathbf{2}}\left(\mathbf{c m}^{4}\right)$	$\boldsymbol{I}_{\text {self }}\left(\mathbf{c m}^{4}\right)$
Plate	60	53.8	3228	17.4	18166	20
Beam	$\underline{104}$	26.6	$\underline{2746}$	10.0	$\underline{10400}$	$\underline{47500}$
	164		5974		28566	47520

$$
\begin{array}{ll}
\hat{Y}=5974 / 164 & = \\
I_{N A}= & 36.4 \mathrm{~cm}^{4} \\
28566+47520= & 76086 \mathrm{~cm}^{4}
\end{array}
$$

Equation [11.9]
shear flow/weld, $q=V Q / /$

$$
\begin{aligned}
& =\quad 2500 \times 60 \times 17.4 / 76086 \\
& =\quad 17.15 \mathrm{kN} / \mathrm{cm} \\
& =\quad 1.72 \mathrm{kN} / \mathrm{mm}
\end{aligned}
$$

From table 10.1 Use 12 mm fillet weld (strength $=1.87 \mathrm{~N} / \mathrm{mm}$)

E11.4

Item	$\boldsymbol{A}\left(\mathbf{c m}^{2}\right)$	$\boldsymbol{y}_{\mathbf{n}}(\mathbf{c m})$	$\boldsymbol{A Y}_{\boldsymbol{n}}\left(\mathbf{c m}^{\mathbf{3}}\right)$	$\boldsymbol{Y}(\mathrm{cm})$	$\boldsymbol{A y}^{\mathbf{2}}\left(\mathbf{c m}^{4}\right)$	$\boldsymbol{I}_{\text {self }}\left(\mathbf{c m}^{4}\right)$
Plate	300	0.5	150	8.45	21421	-
Beams	$\underline{205.2}$	21.3	$\underline{4371}$	12.35	31298	$\underline{55800}$
	505.2		4521		52719	55800

$\begin{aligned} & \hat{Y}= \\ & I_{N A}= \end{aligned}$		4521/505.2	=	8.95 cm
		$52719+55800$	=	$108519 \mathrm{~cm}^{4}$
$W_{\text {pl, top }}$	=	108 519/8.95	=	$12125 \mathrm{~cm}^{3}$
$W_{\text {pl, bottom }}$	$=$	108 519/(41.6-8.95)	=	$3324 \mathrm{~cm}^{3}$
For critical BM put load at midspan:				
$M_{\text {Rd }}$	$=$	PL/4	=	$150 \times 8 / 4$
	=	300 kNm		
$\sigma_{\text {comp }}$	=	$300 \times 10^{6} / 12125 \times 10^{3}$	$=$	$25.0 \mathrm{~N} / \mathrm{mm}^{2}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

$$
\sigma_{\text {tens }}=300 \times 10^{6} / 3324 \times 10^{3}=\underline{90.3 \mathrm{~N} / \mathrm{mm}^{2}}
$$

b.

For critical shear put load adjacent to support:
$V_{\text {Rd }}=150 \mathrm{kN}$
shear flow, q $=V=/ I=150 \times 10^{3} \times 300 \times 8.45 / 108519$
But this is resisted by 6 welds:
Shear flow/weld $=3504 /(6 \times 10)=\underline{58.4} \mathbf{N} / \mathrm{mm}$

Chapter 12 - Arches and portal frames

E12.1

ΣM about A:

$$
\begin{array}{rll}
(600 \times 8)+(600 \times 16)+(2400 \times 24) & = & R_{\mathrm{E}} \times 32 \\
R_{\mathrm{E}} & = & 2250 \mathrm{kN}
\end{array}
$$

$\Sigma \mathbf{V}=0:$

$$
\begin{array}{rll}
600+600+2400 & = & 2250+R_{\mathrm{A}} \\
R_{\mathrm{A}} & = & 1350 \mathrm{kN}
\end{array}
$$

$\Sigma \mathrm{M}$ about C:

	$(2400 \times 8)+\left(H_{E} \times 6\right)$		=	2250×16
		H_{E}	$=$	2800 kN
$\Sigma \mathrm{H}=0$:				
		$H_{\text {A }}$	=	-2800 kN

a.

$M_{B}=(1350 \times 8)-(2800 \times 6)$
$=-6000 \mathrm{kNm}$-tension in top
b.

$$
\begin{aligned}
M_{D} & =(2800 \times 6)-(2250 \times 8) \\
& =-1200 \mathrm{kNm}-\text { tension in bottom } \\
L_{\mathrm{DE}} & =5 \mathrm{~m}
\end{aligned}
$$

For thrust resolve forces parallel to $D E$:

$$
\text { Thrust } \quad=\quad 2250 \times 3 / 5+2800 \times 4 / 5=3590 \mathbf{k N}
$$

For shear resolve forces perpendicular to DE:
Shear $\quad=\quad 2250 \times 4 / 5-2800 \times 3 / 5=\mathbf{1 2 0} \mathbf{k N}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E12.2

$\Sigma \mathrm{M}$ about A:

$$
\begin{array}{rlll}
(20 \times 4)+(40 \times 4)+(80 \times 8)+(40 \times 12) & & & \left(R_{\mathrm{BV}} \times 12\right)+\left(R_{\mathrm{BH}} \times 1\right) \\
1360 & & =12 R_{\mathrm{BV}}+R_{\mathrm{BH}} \tag{1}
\end{array}
$$

$\Sigma \mathrm{M}$ about D :

$(40 \times 4)+\left(R_{\text {BH }} \times 3\right)$		$=$	$R_{\text {BV }} \times 4$
	160	$=$	$4 R_{\text {BV }}-3 R_{\text {BH }}$
(2) $\times 3$	480	$=$	$12 R_{\text {BV }}-9 R_{\text {BH }}$
(1) - (3)	880	$=$	$10 R_{B H}$
	$\mathrm{R}_{\text {BH }}$	=	88 kN
Sub in (1)	1360	$=$	$12 R_{\text {BV }}+88$
	$R_{\text {BV }}$	$=$	106 kN

$\Sigma \mathbf{V}=0:$

$$
\begin{aligned}
40+80+40 & = & 106+R_{\mathrm{AV}} \\
R_{\mathrm{AV}} & = & \underline{\mathbf{~ k N}}
\end{aligned}
$$

$\Sigma \mathrm{H}=0$:

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E12.3

$\Sigma \mathrm{M}$ about A:

$$
\begin{aligned}
&(2.5 \times 6 \times 3)+(6.5 \times 16 \times 8)+(1.2 \times 6 \times 3)= \\
& R_{\mathrm{BV}}= \\
& R_{\mathrm{BV}} \times 16 \\
& 56.2 \mathrm{kN}
\end{aligned}
$$

M about D:

$$
\begin{array}{rll}
(6.5 \times 8 \times 4)+\left(R_{\mathrm{BH}} \times 7\right) & = & (56.2 \times 8)+(1.2 \times 6 \times 4) \\
R_{\mathrm{BH}} & =38.6 \mathrm{kN}
\end{array}
$$

$\Sigma \mathbf{V}=0$:

$$
\begin{aligned}
& 6.5 \times 16= \\
& R_{\mathrm{AV}}=56.2+R_{\mathrm{AV}} \\
& 47.8 \mathrm{kN}
\end{aligned}
$$

$\Sigma \mathrm{H}=0$:

$$
\begin{array}{rlll}
(2.5 \times 6)+(1.2 \times 6)+R_{\text {AH }} & = & 38.6 \\
R_{\text {AH }} & = & 16.4 \mathrm{kN}
\end{array}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E12.4

Using equations 6.1 to 6.3

Try $152 \times 152 \times 37$ Universal Column ($i_{2}=3.87 \mathrm{~cm}, A=47.4 \mathrm{~cm}^{2}$)

Non-dimensional slenderness ratio, $\lambda=2000 /(86 \times 38.7)=0.60$
From figure 7.38

```
\chi = 0.76
    N Rd = 0.76 4 47.4 < 275 = 991 kN>640.3
```

Try a smaller size:
Try $152 \times 152 \times 30$ Universal Column ($i_{2}=3.82 \mathrm{~cm}, A 38.2 \mathrm{~cm}^{2}$)

Non-dimensional slenderness ratio, λ	$=2000 /(86 \times 38.2)$	$=0.61$
From figure 7.38	χ	$=0.75$
	$N_{\text {Rd }}$	$=0.75 \times 38.2 \times 275=788 \mathrm{kN}>640.3 \checkmark$

Use $152 \times 152 \times 30$ Universal Column

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 13 - Foundations and retaining walls

E13.1

$$
\text { Total unfactored load }=350+275=625 \mathrm{kN}
$$

table 13.1 - stiff clay, bearing pressure, $\sigma_{g d}=200 \mathrm{kN} / \mathrm{m}^{2}$

Area of foundation	$=625 / 200$	$=3.125 \mathrm{~m}^{2}$	
For a square, width	$=\sqrt{ } 3.125$	$=$	1.77 m say 1.8 m
Projection	$=0.9-0.2$	$=0.7 \mathrm{~m}$	
Depth, say	$=0.75 \mathrm{~m}$		

E13.2

For reinforced concrete pad use same plan dimensions as above but only 300 mm deep.

Design column load, N_{Rd}	$=$	$=885 \mathrm{kN}$	
Ground pressure, q	$=$	$=885 / 1.8^{2}$	$=273 \mathrm{kN} / \mathrm{m}^{2}$
Design moment, M_{Rd}	$=$	$\left.0.5 \times 273 \times 1.8(1.8 / 2-0.4 / 2)^{2}=1.5 \times 275\right)=120 \mathrm{kNm}$	

Estimate 12 mm dia. Bars
Effective depth, d

$$
\begin{aligned}
K & =M / b d^{2} f_{c k} \quad=\quad 120 \times 10^{6} /\left(1800 \times 242^{2} \times 30\right) \\
& =0.04
\end{aligned}
$$

From figure $7.47 \quad z / d=0.95$
$z=0.95 \times 242=230 \mathrm{~mm}$
$A_{\mathrm{s}}=M / f_{y} z=120 \times 10^{6} /(500 / 1.15 \times 230)$
Number of 12 mm bars $=1200 / 113=11$

$$
1.5(c+3 d)=1.5(0.4+3 \times 0.242) \quad=\quad=\quad 1.69 \mathrm{~m}<1.8 \mathrm{~m}
$$

\therefore put $2 / 3$ of bars in middle band
Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Width of band $=C+3 d$	$=$	$=1.4+(3 \times 0.242)$	
Number of bars in band	$=2 / 3 \times 11$	$=7$	
Spacing within band	$=1130 / 6$	$=188 \mathrm{~mm}$	
		$=(1800-80) / 10$	$=172 \mathrm{~mm}$

$$
\therefore \text { Use even spacing }
$$

Shear across pad

$$
\begin{aligned}
& \text { Shear force, } V_{\mathrm{Ed}}=q \times L \times L / 2-C / 2-d)=273 \times 1.8 \times(0.9-0.2-0.242) \\
&=225 \mathrm{kN} \\
& \text { Shear area }=L \times d=1800 \times 242 \\
& \text { Shear stress, } V_{\mathrm{Ed}}=V_{\mathrm{Ed}} /(L \times d)=225 \times 10^{3} / 435600=435600 \mathrm{~mm}^{2} \\
& 100 \mathrm{~A}_{\mathrm{s}} / \mathrm{bd}=(100 \times 1200) /(1800 \times 242)=0.52 \mathrm{~N} / \mathrm{mm}^{2} \\
&
\end{aligned}
$$

From table $7.2 \quad v_{R d, c}=0.54>0.52-\therefore$ no shear reinforcement required.

Punching shear

Check at the face of the column:

Shear stress, $v_{\mathrm{Ed}}=\quad \frac{q\left(L^{2}-C^{2}\right)}{4 C d}=\frac{273\left(1.8^{2}-0.4^{2}\right) \times 10^{-3}}{4 \times 0.4 \times 0.242}$

$$
=\quad 2.17 \mathrm{~N} / \mathrm{mm}^{2}
$$

From table 7.3

$$
v_{\mathrm{Rd}, \max }=\quad=\quad 5.28 \mathrm{~N} / \mathrm{mm}^{2}>2.17 \mathrm{~N} / \mathrm{mm}^{2}
$$

Check at $a=d$:

$$
\begin{aligned}
\text { Shear stress, } v_{\mathrm{Ed}} & =\frac{q\left(L^{2}-4 C d-\pi d^{2}\right)}{(4 C+2 \pi d) d} \\
& =\frac{273\left(1.8^{2}-4 \times 0.4 \times 0.242-\pi \times 0.242^{2}\right) \times 10^{-3}}{(4 \times 0.4+2 \times \pi \times 0.242) \times 0.242} \\
& =0.961 \mathrm{~N} / \mathrm{mm}^{2} \\
& =0.54 \mathrm{~N} / \mathrm{mm}^{2} \\
& =0.54 \times 2 \mathrm{~d} / \mathrm{d} \\
V_{\mathrm{Rd}, \mathrm{c}} & =1.08 \mathrm{~N} / \mathrm{mm}^{2}>0.961 \mathrm{~N} / \mathrm{mm}^{2} \checkmark
\end{aligned}
$$

From shear across pad

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Check at a = 2d:

$$
\begin{aligned}
& \text { Shear stress, } v_{\mathrm{Ed}}=\quad \frac{q\left(L^{2}-8 C d-4 \pi d^{2}\right)}{4(C+\pi d) d} \\
& =\frac{273\left(1.8^{2}-8 \times 0.4 \times 0.242-4 \times \pi \times 0.242^{2}\right) \times 10^{-3}}{4(0.4+\pi \times 0.242) \times 0.242} \\
& =\quad 0.413 \mathrm{~N} / \mathrm{mm}^{2} \\
& =\quad 0.54 \mathrm{~N} / \mathrm{mm}^{2} \\
& =0.54 \times 2 d / 2 d \\
& =\quad 0.54 \mathrm{~N} / \mathrm{mm}^{2}>0.413 \mathrm{~N} / \mathrm{mm}^{2} \checkmark
\end{aligned}
$$

Proposed dimensions and reinforcement are satisfactory

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

E13.3

ΣM about A:

Item	Weight (kN)	Distance (m)	Moment (kNm)
1	$1.0 \times 2.5 \times 24=60.0$	0.750	45.0
2	$0.25 \times 0.75 \times 24=\underline{4.5}$	0.125	$\underline{0.5}$
	64.5		45.5

Distance from A to centre of mass $=45.5 / 64.5$
$=0.705 \mathrm{~m}$

Distance from base centre

$$
\begin{aligned}
& =0.705-0.625 \\
& =0.080 \mathrm{~m}
\end{aligned}
$$

Soil pressure at base	$=K_{\mathrm{a}} \gamma_{\mathrm{s}} z$	$=$	$0.33 \times 20 \times 2.5=16.5 \mathrm{kN} / \mathrm{m}^{2}$
Active force	$=16.5 / 2 \times 2.5$	$=20.63 \mathrm{kN}$	
Overturning moment	$=20.63 \times 2.5 / 3$	$=$	17.2 kNm
Eccentiicity, e_{r}	$=17.2-(64.5 \times 0.08) / 64.5$	$=0.187 \mathrm{~m}$	
Distance to edge of mid. $1 / 3^{\text {rd }}$	$=$	$1.25 / 6$	
		$=0.208 \mathrm{~m}>0.187 \mathrm{~m}$	

i.e. resultant is within middle third

$$
\begin{array}{rll}
\sigma_{\max } & =F / A+F e_{r} / W_{e l} & =64.5 / 1.25+64.5 \times 0.187 /\left(1 \times 1.25^{2} / 6\right) \\
& =51.6+37.1 & =\underline{88.7 \mathrm{kN} / \mathbf{m}^{2}}
\end{array}
$$

Sliding:

Active force	$=20.63 \mathrm{kN}$		
Friction	$=64.5 \times 0.6$	$=$	38.7 kN
Passive resistance force	$=K_{\mathrm{p}} \gamma_{\mathrm{s}} \mathrm{z}^{2} / 2$		$=3 \times 20 \times 0.5^{2} / 2=$
Factor of safety	$=(38.7+7.5) / 20.63$	$=$	$\mathbf{2 . 2 4}$

E13.4
Pressure behind wall becomes:

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

$\mathrm{x}=d / 2-e_{\mathrm{r}}$	$=0.625-0.37=0.255$
	$=2 \times 64.5 /(3 \times 0.255)=$
$\underline{\sigma}_{\max }$	

Sliding:

Factor of safety
$=(38.7+7.5) / 34.9=$
1.32

Chapter 14 - Deflection

E14.1

$$
F_{L} \text { case }
$$

$$
F_{u} \text { case }
$$

F_{L} fore diagian

Feu fore diagram

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Member	$L(\mathrm{~mm})$	$A\left(\mathrm{~mm}^{2}\right)$	$F_{L}(\mathrm{~N})$	$\delta=\frac{F_{L} L}{E A}(\mathrm{~mm})$	F_{u}	$F_{\mathrm{u}} \delta$
AD	3606	5000	14400	-1.48	-0.60	0.89
DC	3606	5000	10800	-1.11	-0.60	0.67
CE	3606	5000	10800	-1.11	-1.20	1.33
EB	3606	5000	14400	-1.48	-1.20	1.78
BG	4000	5000	12000	1.37	1.00	1.37
GF	4000	5000	6000	0.69	0.50	0.35
FA	4000	5000	12000	1.37	0.50	0.69
DF	2236	5000	6700	-0.43	0	0.00
FC	4472	5000	6700	0.86	0	0.00
CG	4472	5000	6700	0.86	1.12	0.96
GE	2236	5000	6700	-0.43	0	0.00
					$\Sigma=$	$\mathbf{8 . 0 4}$

Deflection $=8.04 \mathrm{~mm}$

E14.2

$$
\begin{aligned}
& \text { Deflection, } \delta=\frac{5 w L^{4}}{384 E I}+\frac{P L^{3}}{48 E I} \\
& =\frac{5 \times 16 \times 7500^{4}}{384 \times 205000 \times 18600 \times 10^{4}}+\frac{32 \times 7500^{3}}{48 \times 205000 \times 18600 \times 10^{3}} \\
& =17.3+7.4 \\
& =24.7 \mathrm{~mm}
\end{aligned}
$$

E14.3

Aluminium,	$E=70000 \mathrm{~N} / \mathrm{mm}^{2}-$ table 3.3
$2^{\text {nd }}$ mom. Area, 1	$=\pi R^{4} / 4-\pi r^{4} / 4-$ figure 7.31

$=\pi / 4\left(60^{4}-58^{4}\right)=1.29 \times 10^{6} \mathrm{~mm}^{4}$
$\delta=P L^{3} / 3 E I$
$=150 \times 6000^{3} /\left(3 \times 70000 \times 1.29 \times 10^{6}\right)$
$=120 \mathrm{~mm}$

E14.4

Table 3.1

$$
A_{s}=3 \times 491=1473 \mathrm{~mm}^{2}
$$

Effective depth, $d=500-40-10-12.5=437.5 \mathrm{~mm}$
$\%$ reinforcement $=100 \times 1473 /(300 \times 437.5)=1.12 \%$

Table 14.1 by interpolation:
Basic span/depth ratio $=6.76$
Maximum span $=6.76 \times 437.5=2960 \mathrm{~mm}$ say $\underline{\mathbf{3 . 0} \mathrm{m}}$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

Chapter 15 - Indeterminate structures and computers

E15.1

a. Each crossed member (2) adds a redundancy plus additional internal roller supports (2) - answer - 4.
b. Simple cantilever is statically determinate so internal roller supports add two redundancies - answer - 2
c. A Three-pin portal is statically determinate so making two pins into rigid joints adds two redundancies - answer - 2

E15.2

$\Sigma \mathrm{M}$ about $\mathrm{A}:$	
$-267+(300 \times 2)+133-6 R_{\mathrm{B}}$	$=$
R_{B}	$=0$

$$
\Sigma V=0
$$

$$
\begin{aligned}
R_{\mathrm{A}} & =300-78 \\
& =222 \mathrm{kN}
\end{aligned}
$$

$$
M_{C}=267-(222 \times 2)
$$

$$
=\quad 177 \mathrm{kNm}
$$

\therefore Design moment, $M_{\mathrm{Ed}} \quad=\quad 267 \mathrm{kNm} \quad$ (i.e. biggest moment on beam)

$$
\begin{array}{rll}
W_{\mathrm{pl}} & =267 \times 10^{6} / 275 \times 10^{3} & \left(\gamma_{\mathrm{M}}=1.0\right) \\
& =971 \mathrm{~cm}^{3}
\end{array}
$$

Use $406 \times 178 \times 54 \mathrm{~kg} / \mathrm{m}$ universal beam $\left(W_{\mathrm{pl}}=1050 \mathrm{~cm}^{3}\right)$

E15.3

$M_{P}(2 \theta+3 \theta+\theta)$	$=300 \times 4 \theta$	
$6 M_{P}$	$=1200$	
M_{P}	$=200 \mathrm{kNm}$	
$W_{p l}$	$=200 \times 10^{6} / 275 \times 10^{3}$	$\left(\gamma_{M}=1.0\right)$

Use $406 \times 140 \times 39 \mathrm{~kg} / \mathrm{m}$ universal beam $\left(W_{\mathrm{pl}}=724 \mathrm{~cm}^{3}\right)$

$$
\% \text { reduction } \quad=(54-39) / 54 \times 100=\underline{\mathbf{2 7 . 8}} \mathbf{~}
$$

Solutions to the end of chapter exercises for Understanding Structures fifth edition by Derek Seward © Derek Seward 2014

