TOUR OF THE BOOK

Section summary

An overview of each main section

Contexts
What is this chapter about?
This chapter explains how to select a sample of data and use it to make valid inferences about the wider set of data or population it came from.
Why is it useful?
Businesses and organisations frequently collect just a sample of the data of interest because it is too costly or impractical to obtain all the information, for instance, in surveys, product testing, quality control, auditing and market research.

Where does it fit in?

The subject of Statistics broadly divides into two parts: Descriptive Statistics, which we considered in Describing Data, is about summarising a set of data, whereas Inferential Statistics,

Contexts

Places each chapter in context and tells what you need to know to get the most from it

Objectives

After your work on this chapter you should be able to:

- cancel down fractions to their simplest terms;
- cancel down fractions expressed in symbols;
- add and subtract, multiply and divide fractions;
- expand or multiply out brackets in an expression;
- factorise expressions;
- understand positive and negative powers;
- multiply and divide powers of the same number, calculate the power of a power;
- write down powers of products and quotients,
- understand and manipulate fractional powers.

Objectives

What you should be able to do after completing the chapter

Can I do this?

- There are many more techniques for working with symbols and some will be considered in Chapte EM2. However, if you are in doubt as to whether two expressions are equivalent you can alway For instance, suppose youre unsure whether $p \times q$ is the same as $q \times p$. We have picked one to start with - we have already said that this is true.) If, for example, $\mathrm{p}=2$ and $\mathrm{q}=1$, then $\mathrm{p} \times \mathrm{q}$ $=2 \times 1=2$ and $q \times p=1 \times 2=2$, so the expressions are equal for these values. Now try $p=-5$ and $q=2$, putting a negative number to the test, and we have $\mathrm{p} \times \mathrm{q}=-5 \times 2=-10$ and $\mathrm{q} \times \mathrm{p}=2 \times-5=-10$ which again are equal.
θ
Be warned, however, that 'trying out' values like this does not constitute proof that the expres sions are equal - you may just have been lucky and by chance selected values that worked If the expressions are not equal for the values you have chosen, then this does, however, prove that the re not equivalent expressions.
For instance, is it true that

$$
\frac{m+n}{n}
$$

Icons

Pointing out tips, warnings and where computers can help

Key facts

Summaries of essential results and equations
When the number of items sold is the same as the quantity produced (that is, all items are sold)
we can draw both the revenue, R, and total cost, C, functions on the same graph, as shown in
Figure 2.12.

Figures and tables

Clear graphical and tabular presentation of data

Test boxes

In Essential Maths and More Maths, a chance to see whether you already know the material in a section. If you do, you can skip it!

Work cards

Exercises with fully worked solutions at the end of each section

Moving on... to the real world
Discusses the application of quantitative techniques in real-life businesses and organisations, with links to further material on the companion website

Check this
Worked examples so that you can learn by doing

Assessments

Additional exercises - with solutions only available to lecturers through the companion website

Pointers to more sources of information about specific topics in other books, and further resources on the companion website

